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ABSTRACT

Recent neural-based text-to-speech (TTS) models are able
to produce highly natural speech. To synthesize expressive
speech, the prosody of the speech has to be modeled, and
predicted/controlled during synthesis. However, intuitive
control over prosody remains elusive. Some techniques only
allow control over the global style of the speech and do not
allow fine-grained adjustments. Other techniques create fine-
grained prosody embeddings, but these are difficult to ma-
nipulate to obtain a desired speaking style. We thus present
ConEx, a novel model for expressive speech synthesis, which
can produce speech in a certain speaking style, while also
allowing local adjustments to the prosody of the generated
speech. The model builds upon the non-autoregressive ar-
chitecture of FastSpeech and includes a reference encoder
to learn global prosody embeddings, and a vector quantized
variational autoencoder to create fine-grained prosody em-
beddings. To realize prosody manipulation, a new interactive
method is proposed. Experiments on two datasets show that
the model enables multi-level prosody control.

Index Terms— speech synthesis, text-to-speech, prosody,
controllability, hierarchical prosody embedding

1. INTRODUCTION

Humans use expressive speech to convey more than words.
We express emotions and even deliver additional meaning
(e.g. irony) through our way of speaking. To do so, we vary
speech characteristics such as intonation, stress, rhythm and
so forth, collectively referred to as prosody. In order to gener-
ate realistic expressive speech, TTS models should thus pro-
duce the fitting prosody. Prosody modeling in TTS currently
attracts great attention [, 2, 13]. However, predicting prosody
is hard and cannot entirely be solved, since the problem of
mapping text to speech is underdetermined; one text can map
to many plausible speech utterances with varied prosody. To
alleviate this, control over the prosody of the synthesized can
be useful, especially when the speech synthesis systems do
not produce speech in the desired prosody.

Despite the tremendous progress made in expressive
speech synthesis [4} 5 16 [7, [8 1} |9, [10} [2} [11]], the exist-

ing literature is highly focused on modeling the prosody, but
leaves an important gap where controlling the prosody in a
practical way is considered. While controlling the global
style can be done intuitively, by selecting the general style,
or transferring it from a reference utterance, it is unclear
how to control the prosody on a finer level. The research on
fine-grained prosody in speech synthesis has been limited to
modeling and predicting the prosody [} [2, 3]. Just having
the ability to model the fine-grained prosody is insufficient,
because even if the representation is interpretable (e.g. pitch
and duration), it is hard to set them all individually to obtain
a desired and coherent speaking style.

This paper bridges the prosody controllability gap, by
proposing ConEx: a novel interactively Controllable model
for Expressive speech synthesis. It enables control over the
global speaking style of the generated speech, while still al-
lowing local prosody adjustments in an intuitive way. The
main insight is that, while it is arduous to describe prosody on
a fine-grained level, it is very easy to assess through listening
whether an utterance has the desired prosody. We propose
an interactive method where the user indicates the phoneme
from where onward the prosody needs to change. The model
then generates new options with variations in the prosody,
while maintaining coherency and the global style.

We make the following contributions: 1) ConEXx, an ex-
tension of the FastSpeech TTS model [12], with a novel hi-
erarchical prosody encoder that is the first to combine global
speaking style and phoneme-level prosody. 2) A novel inter-
active method for making local edits to the prosody of synthe-
sized speech. It allows locally changing the prosody, while
still maintaining the desired global style and naturalness of
the output speech. 3) Experiments which demonstrate that the
proposed technique enables fine-grained prosody edits, such
as emphasizing words or changing their duration, while main-
taining coherency and the desired global style.

2. BACKGROUND

2.1. Text-To-Speech

The task of speech synthesis or text-to-speech (TTS) is to gen-
erate speech from some input text. Neural TTS models typ-



ically consist of two stages, where the first generates a mel-
spectrogram from text [13} [12], and the second, the vocoder,
synthesizes speech from the mel-spectrogram [[14} 15, |16} 17,
18]. We focus on controlling the prosody in the first stage.

The first TTS stage is usually an encoder-decoder sequence-

to-sequence model [19] that maps text to mel-spectrograms.
Coherent speech can be obtained via an autoregressive de-
coder, as in Tacotron [13[]. First, the encoder creates a
contextualized representation of each input element. Then,
the decoder transforms these representations into the output
sequence. Other models, such as FastSpeech [12f], Paral-
lel Tacotron [2], Flow-TTS [20], and ParaNet [21] greatly
improve the training and synthesis speed by using non-
autoregressive architectures. To synthesize speech with co-
herent prosody, the prosody can either be learned from an
autoregressive teacher model [[12], or explicitly be modeled
and predicted [22, 16, (8}, 23}, 9} [1} 2} [3]].

2.2. Modeling Prosody

Prosody can be represented using interpretable prosodic fea-
ture, such as pitch, loudness, and duration [9, 24]. However,
it is hard to set them so to create a desired prosodic effect.
Alternatively, latent prosody representations can be learned.
A prosody encoder network takes a speech fragment as its in-
put and outputs an embedding which represents the prosody
in that fragment [4, |6, 18, |2} 23]].

The prosody can be modeled as representations of dif-
ferent granularity levels: 1) Utterance-level representations
capture the global speaking style [4} 15, |6 8, 2], 2) Phone-
me-level embeddings represent fine-grained aspects (like
duration, pitch and loudness) of a single phoneme [7, 9,
1, 2], 3) Syllable-level representations [10], and 4) Hier-
archical approaches condition fine-grained representations
(phonemes) on coarser representations (e.g. words) [23} 3]

This paper proposes a hierarchical approach with global
(utterance-level) style, and phoneme-level prosody.

2.3. Controlling Prosody

Controlling prosody usually uses one of two general ap-
proaches: 1) Generate speech in a certain global speaking
style. This style is obtained from a reference utterance,
or a preset set of styles. In practice, variations in speech
can be generated for the same style by “abusing” the model’s
stochasticity to generate multiple versions of the same speech.
However, there is no way to steer this process. 2) Using fine—
grained prosody features/embeddings, by setting them for
each phoneme or syllable. Even with interpretable features,
it is arduous to manipulate them to obtain the desired and
coherent prosody. To the best of our knowledge, no intuitive
method for controlling the fine-grained prosody has been
proposed in the literature.

This paper extends global speaking style control with a
new method for intuitively making local prosody adjustments.
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Fig. 1. The hierarchical prosody encoder. Top: the reference
encoder and the fine-grained prosody encoder during training.
Bottom: the AR prior at inference time.

3. CONEX: CONTROLLABLE EXPRESSIVE TTS

ConEx is a novel interactively Controllable model for Expressive

speech synthesis. To synthesize speech with the desired
prosody, the user first provides text and a global style, and
then interactively improves the prosody by giving local hints.
The local hint is the phoneme until where the generated
speech is satisfactory. ConEx then generates new options by
changing the fine-grained prosody starting from the indicated
phoneme, and the user selects the best option. This process is
repeated to iteratively converge to the desired prosody.

To achieve this type of controllability, the prosody is rep-
resented hierarchically: at the global level (for the speaking
style) and at phoneme level. The sequence of local prosody
embeddings needs to be consistent with the global style as
well as coherent utterance-wide. ConEx allows prosodic vari-
ations by supporting diverse fine-grained prosody embedding
sequences per style.

To allow for diverse yet coherent prosody, ConEx em-
ploys vector-quantized fine-grained prosody embeddings in
combination with an autoregressive prior over this embedding
space, as this has shown promise [1]]. We further extend it to
condition the fine-grained prosody embeddings on the global
style extracted from the reference utterance. Furthermore, we
provide a method for interactive prosody control. Fast speech
generation is essential to support real-time interaction, there-
fore, the architecture follows FastSpeech [12]].

3.1. Architecture

The ConEx architecture follows FastSpeech [12] (with the
duration predictor from FastSpeech 2 [9]), but adds a novel
hierarchical prosody encoder. Figure [I] shows the three ele-
ments of this prosody encoder: 1) the reference encoder that
extracts global style embeddings from reference utterances,
2) the VQ-VAE for quantized fine-grained prosody embed-
dings to locally control the prosody, and 3) the autoregres-



sive model that represents the conditional prior over the fine—
grained prosody space.

1) The global style reference encoder encodes the speak-
ing style of an entire utterance in a single embedding. The
input is the mel-spectrogram of a reference utterance in the
desired style, but possibly with different text. The output
is a continuous global prosody embedding. The reference
encoder, based on [4], has two 2D convolutional layers (to
downsample the input), one GRU layer (to summarize over
time), and a final projection.

2) The fine-grained prosody encoder encodes the phoneme-
level prosody as discrete embeddings. Discrete embeddings
are used for easier control, and because they can be pre-
dicted by a simple autoregressive prior model during syn-
thesis [1]. The embeddings are encoded from their ground-
truth mel-spectrogram using a vector quantized variational
autoencoder (VQ-VAE) [25], adapted for hierarchical em-
beddings [3]. The encoder starts from the global reference
encoder’s downsampled mel spectrogram. The alignment
layer averages the spectrogram frames per phoneme to align
them with the phoneme embedding sequence. Two linear
ReLU-activated projection layers project the phoneme vec-
tors to a latent 3D space. Then vector quantization (VQ) is
applied: each phoneme vector is replaced by the closest em-
bedding from a codebook with &k discrete embeddings. After
a final projection, the fine-grained embeddings are added to
the phoneme embeddings.

3) Fine-grained prosody prediction is necessary to syn-
thesize speech for an unseen phoneme sequence, because
the fine-grained prosody encoder cannot be used without a
ground-truth mel spectrogram. An autoregressive (AR) prior
model predicts the fine-grained prosody embeddings from
the global style embedding and the phoneme sequence. The
model is autoregressive to generate coherent prosody. Similar
to [[1], the AR prior model is an LSTM, but the input was ex-
tended by concatenating the style embedding to the phoneme
embedding. The output is a categorical distributions over the
different discrete embeddings.

3.2. Training

In a first step, everything except the AR prior is trained,
using pairs of text (as phoneme sequences) and speech (as
mel-spectrograms), so to minimize the MAE. The mel-
spectrogram is the target as well as the prosody encoder
input. A second step trains the AR prior model so to min-
imize the fine-grained prosody embeddings MSE, using the
global style embeddings and phoneme embeddings as input,
and quantized fine-grained prosody embeddings as targets,
all generated by the model trained in the first step.

3.3. Interactively Controllable Speech Synthesis

The global speaking style is obtained by choosing a global
prosody embedding from one of the training utterances or

by using the reference encoder to encode a reference utter-
ance with the desired style. Fine-grained prosody embeddings
for this global style are generated by the AR prior model,
as shown in figure To make local adjustments to the
prosody starting from a specific phoneme, the categorical dis-
tribution predicted by the AR prior model for that phoneme is
used to obtain the top k options. The rest of the fine-grained
prosody embedding sequence is generated autoregressively,
resulting in k speech variations, which vary starting from the
indicated phoneme. After selecting the preferred generated
utterance, the user can employ the same method iteratively to
make further adjustments, if desired. By employing the AR
prior model which is conditional on the global style, the gen-
erated speech will sound natural as well as conform with the
global style.

4. EXPERIMENTS

We aim to answer the following questions: (1) When no
prosody adjustments are made, can ConEx generate speech
with a desired global style? (2) Can fine-grained prosody
embeddings be swapped to obtain the desired local prosody?
The accompanying demo pag contains audio samples to
support the experimental results.

4.1. Experimental Setup

Data Two datasets are used, both consisting of speech ut-
terances annotated with their phoneme description and align-
ment. The first dataset, “Styles”, is a proprietary dataset, con-
sisting of 23.5 hours of speech in US English recorded by a
professional voice actor. There are 13686 utterances, each an-
notated with one of six styles (normal, happy, sad, old, villain,
loud). Between the samples of one style, the prosody does not
vary a great deal. The second dataset: “blizzard”, is the 2013
Blizzard Challenge dataset [26], consisting of 147 hours of
speech from 49 audiobooks narrated by Catherine Byers. The
utterances are highly expressive and contain ample prosodic
variation. It has no additional annotations. Six representative
styles were selected by choosing diverse embeddings from a
2D t-SNE plot.

Model & Training The proposed architecture was imple-
mented as an extension to ESPnet [27]. ConEx was trained
for 400.000 steps (42-48 hours on a single NVIDIA P100
GPU), using the Adam optimizer 28] (5,=0.9, 52=0.999,
and e=10"%) and the learning rate scheduler from [29]. All
hyperparameters are listed on the accompanying demo page.
The AR prior model was trained with the same optimizer
and schedule, but for 25.000 steps (around 3.5 hours) on the
same hardware. After the training step, our speech synthe-
sis method requires no GPU nor special powerful hardware to

'https://people.cs.kuleuven.be/~jessa.bekker/
ConEx/
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generate and control new speech samples. To allow interac-
tive control, we used a fast vocoder: parallel WaveGAN [18]],
pre-trained on the LibriTTS corpus [307]

4.2. Global Style Transfer without Local Adjustments

To evaluate the global style transfer, an AXY test is carried
out: for each input sentence two speech outputs, X and Y, are
generated: X using a reference utterance A, Y without global
style conditioning. If the style is transferred, then X should be
more similar to A than Y. The experiment was carried out for
all representative styles and three input sentences. The dis-
tance is measured by Mel Cepstral Distortion (MCD) [4] and
the Fy MSE [31]. The utterances are aligned using Dynamic
Time Warping (DTW). Additionally, a qualitative comparison
can be done on the accompanying demo page.

Table[I] shows that the samples generated using the global
prosody embedding generally closer to the reference sam-
ple. Qualitatively listening to the generated audio leads to
the same conclusion for all styles of the “Styles” dataset, and
styles 4-6 of the Blizzard dataset. However, styles 1-3 are
transferred less clearly, as the speaking rate and rhythm do
not seem to correspond.

Data Style Mean MCD (}) Mean Fo MSE ()
AX AY AX AY

Styles Happy 3.61 397 6992.11 7270.97
Loud 5.30 6.61 8102.28  10089.48
Old 2.55 3.05 3721.09 5635.80
Sad 4.16 4.63 3090.39 5820.60
Villain  3.32 3.83 1164.74 9991.15

Blizzard Style 1 3.49 3.70 11270.39  11806.36
Style2 3.44 3.56 11469.32 11338.54
Style3  3.29 3.74 14614.33  14778.82
Style4  3.22 3.75 15728.65 14835.17
Style5 3.56 3.67 9979.27  10403.00
Style6  3.79 4.04 15230.49 15340.72

Table 1. Mean MCD and mean F;y MSE values for the differ-
ence between the samples generated using a global prosody
embedding and the reference sample (A X) and the difference
between baseline samples and the reference sample (AY).

4.3. Fine-Grained Prosody Control

To evaluate whether fine-grained prosody embeddings can be
swapped to obtain the desired local prosody, different qual-
itative tests are carried out, whereby the effects of changing
the fine-grained prosody embeddings are analyzed. This ap-
proach is similar to the controllability experiments of [23[10].
First, speech is generated using the global style. Then, the
prosody embeddings for a certain phoneme were edited by

2The LibriTTS corpus is multi-speaker and can thus be used as a general
vocoder. However, since LibriTTS does not include the voices of “Styles”
and “Blizzard”, the generated audio samples contain some voice distortion.

selecting one of the other top-3 embedding options. Three
text inputs were used to evaluate this method: 1) “I didn’t
say he stole the money” 2) “Whenever you feel like criticiz-
ing anyone, he told me, just remember that all the people in
this world haven’t had the advantages that you had” 3) “This
would have changed the grand result of the war” For the first
sentence, samples were generated to test if every word of the
sentence could be stressed. The second and third sentence the
“a” in “anyone” was adapated, and in the third “war”.

For the Blizzard dataset, the method successfully empha-
sized 4 out of 7 words of sentence 1. The original prediction
lead to an emphasis on “didn’t”. The phonemes correspond-
ing to “I”, “say”, and “stole” could be emphasized by choos-
ing different fine-grained prosody embeddings from the top
3, but “he”, “the”, and “money” could not. Changing the
prosody embedding corresponding to “he” lead to a change
in prosody for “say”. The effects of the edit were thus not
local. Furthermore, the “0” in “money” could only be em-
phasized by using two prosody embeddings that were not
suggested by the AR prior. The majority of the other codes
caused changes in the prosody of “stole”. Sentence 2 show
that the diversity of the the top-3 fine-grained prosody embed-
dings can sometimes be limited. When the prosody embed-
ding for the phoneme corresponding to the “a” in “anyone”
was changed for the second option, the output speech only
changed slightly. Furthermore, some prosody embedding
caused a change in a previous phoneme, again indicating that
the effects are not entirely local. Sentence 3 also showed
this effect. When the fine-grained prosody embedding of
“wa” in “war” was swapped, the prosody of “sult” in “result”
changed. These non-local effects complicate the process of
making targeted edits to local prosody. The self-attention
mechanism in the ConEx decoder is probably the reason of
this problem, as it could allow a fine-grained prosody embed-
ding to influence the prosody of more phonemes than only
the one corresponding to the prosody embedding.

For the Styles dataset, the technique mostly fails, result-
ing in the same prosody with any of the AR prior model’s
top predictions. Only for a few phonemes, a difference was
found but limited to the length of the phoneme. This can be
explained by the lack of variety within styles in this dataset.

5. CONCLUSION

This paper proposed a novel model for multi-level control-
lable speech synthesis, using a reference encoder for the
global style and a VQ-VAE for fine-grained prosody. Fur-
thermore, we proposed an interactive method for editing the
local prosody, by choosing new embeddings from the top
predictions of an autoregressive prior, trained over the fine-
grained prosody embeddings. Experimental results showed
that a global prosody embedding from a reference speech
sample could be used to control the speaking style of the
output speech, and that the changing the fine-grained prosody
embeddings indeed lead to a change in local prosody.
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