

Estimating the Class Prior in Positive and Unlabeled Data through Decision Tree Induction

Jessa Bekker

Jesse Davis

jessa.bekker@cs.kuleuven.be people.cs.kuleuven.be/~jessa.bekker Machine Learning Reality

Please check the others, Dr. Nefario

Learning with Positive and Unlabeled Data

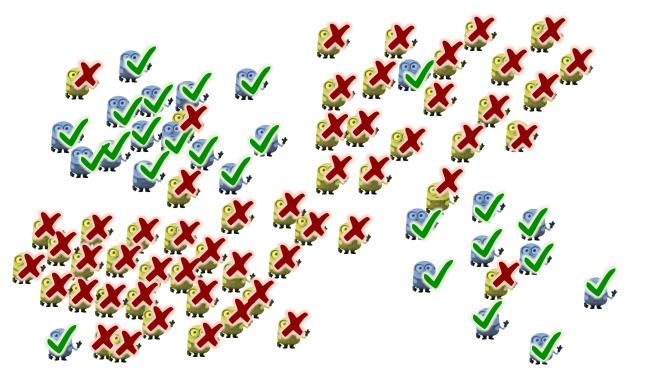
These minions have diabetes

Please check the others, Dr. Nefario

Or....

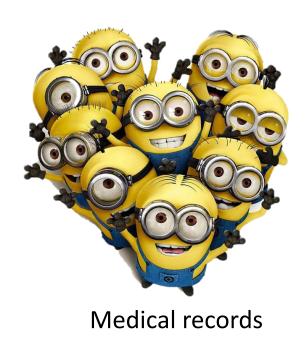
We can use the data as is, keeping in mind that the undiagnosed minions might still have diabetes.

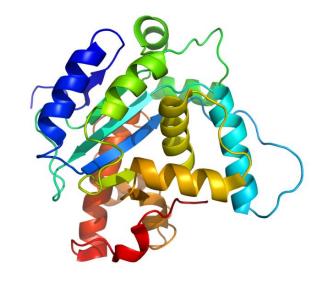
Supervised

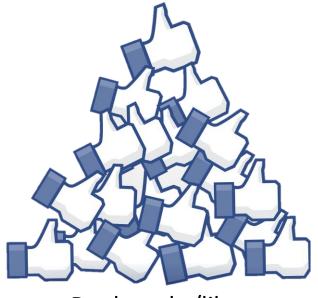


Positive and Unlabeled (PU)

Positive and Unlabeled Data is Everywhere







Bookmarks/likes

Our Contribution

A new method for estimating the class prior α in PU data

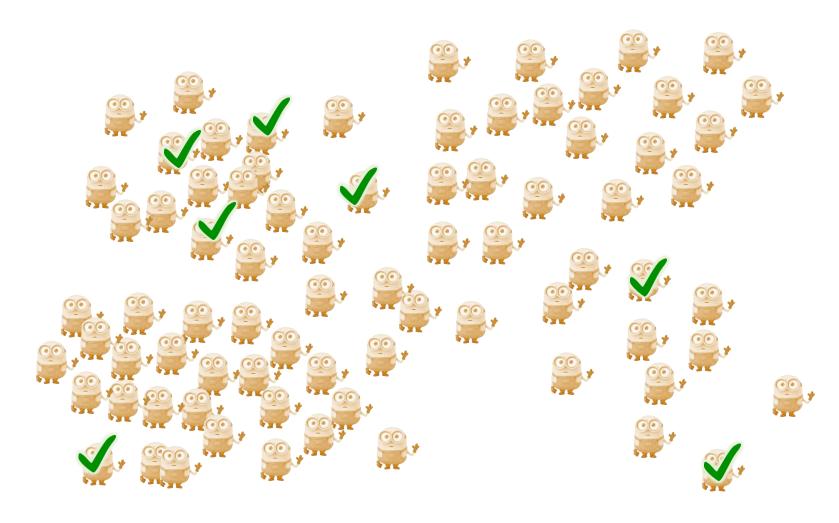
$$\alpha = \Pr(positive)$$

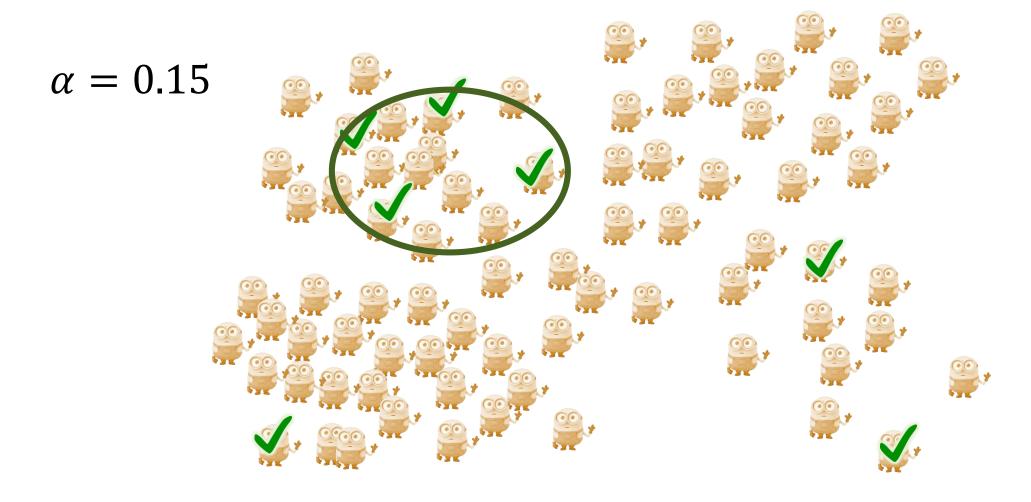
Why is this Important?

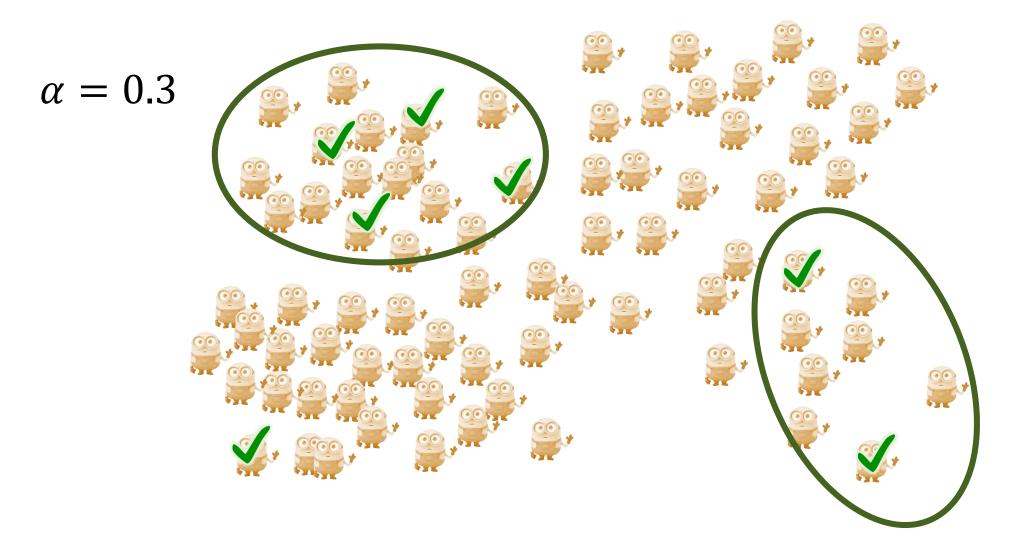
Knowing the class prior simplifies PU learning: Standard learner modified with α = PU learner

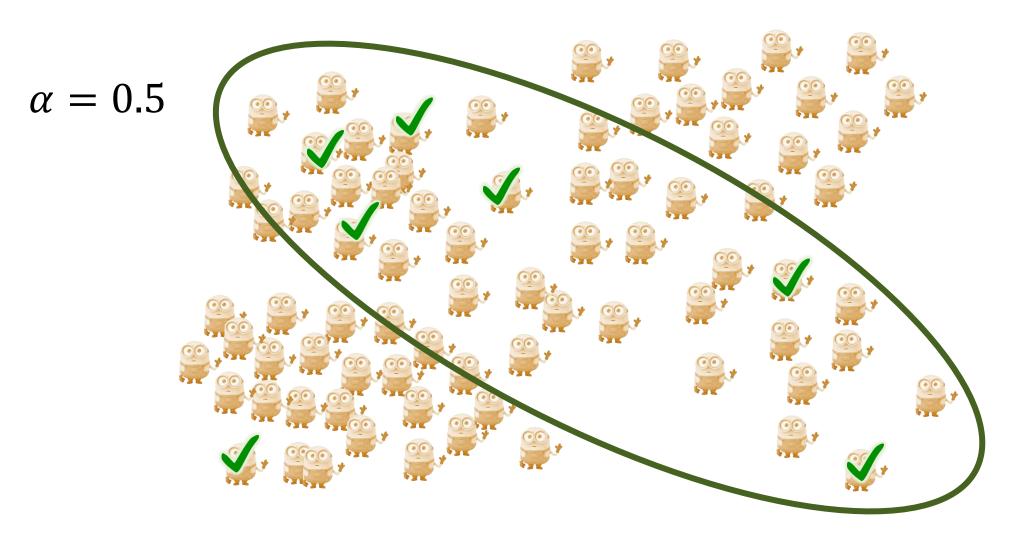
Assumption: observed positive examples are selected completely at random from the positive set.

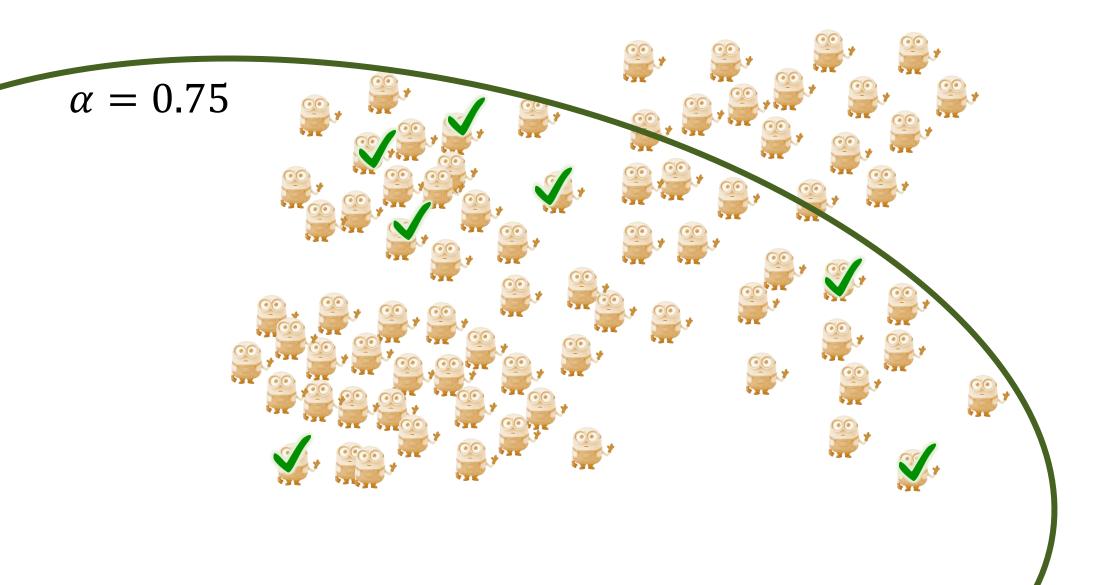
[Elkan and Noto, 2008]











We Estimate the Label Frequency c

$$c = \Pr(labeled|positive)$$

Equivalent to estimating class prior α

$$c = \frac{\Pr(labeled, positive)}{\Pr(positive)} = \frac{\Pr(labeled)}{\Pr(positive)}$$
 Count in data Count in data Count in data

Selected Completely at Random Assumption:

$$c = \Pr(labeled|positive) = \Pr(labeled|positive, x)$$

Our Method: TIcE

Tree Induction for c Estimation

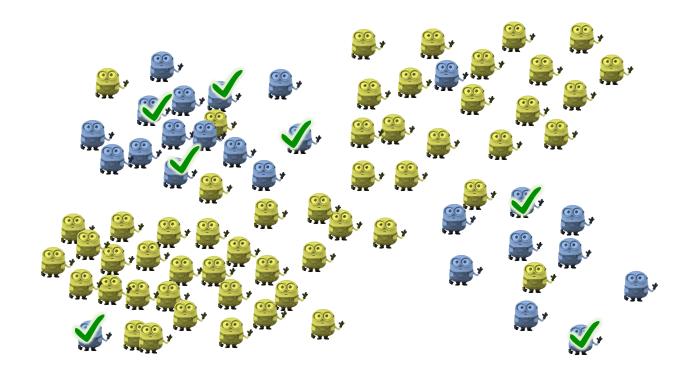
Insight 1: Data Implies Lower Bound on c

Upper bound on #positives $\#positive \leq \#total$

→ Lower bound on *c*

$$c = \frac{\#labeled}{\#positive}$$

$$\geq \frac{\#labeled}{\#total}$$

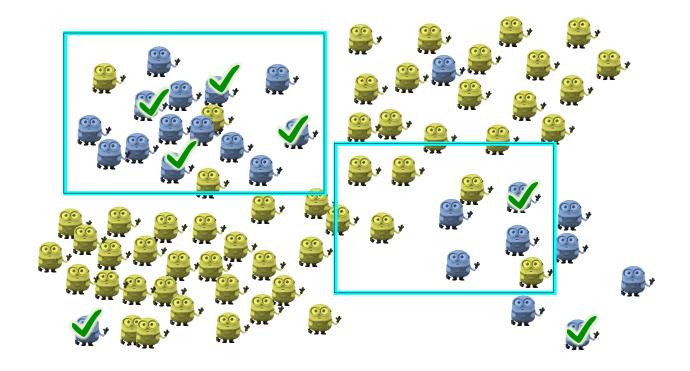


Insight 1: Data Implies Lower Bound on c

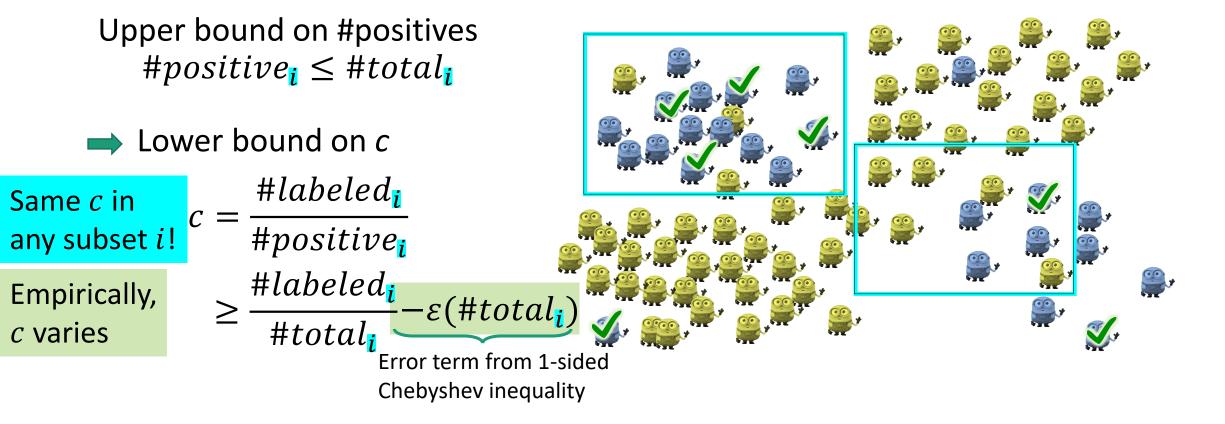
Upper bound on #positives $\#positive_{i} \leq \#total_{i}$

→ Lower bound on *c*

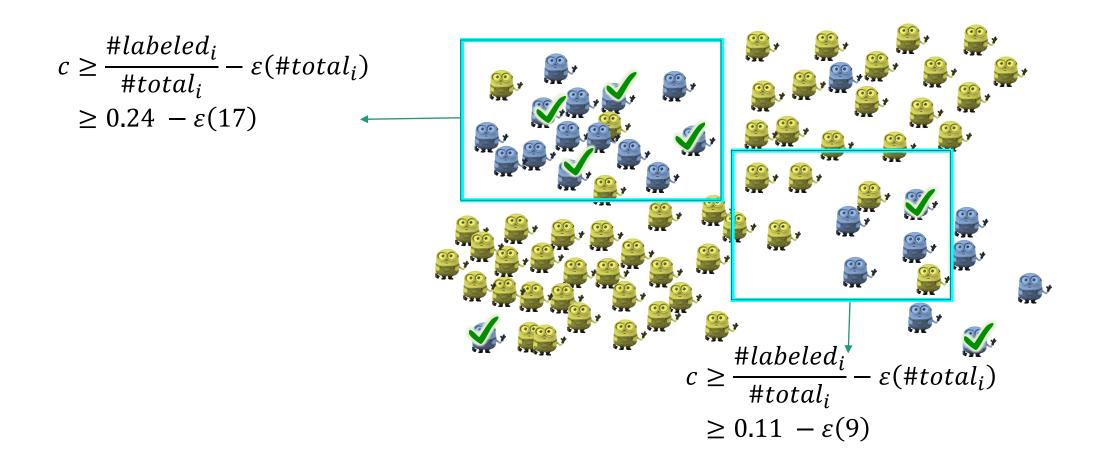
Same c in any subset i! $c = \frac{\#labeled_i}{\#positive_i}$ $\geq \frac{\#labeled_i}{\#total_i}$



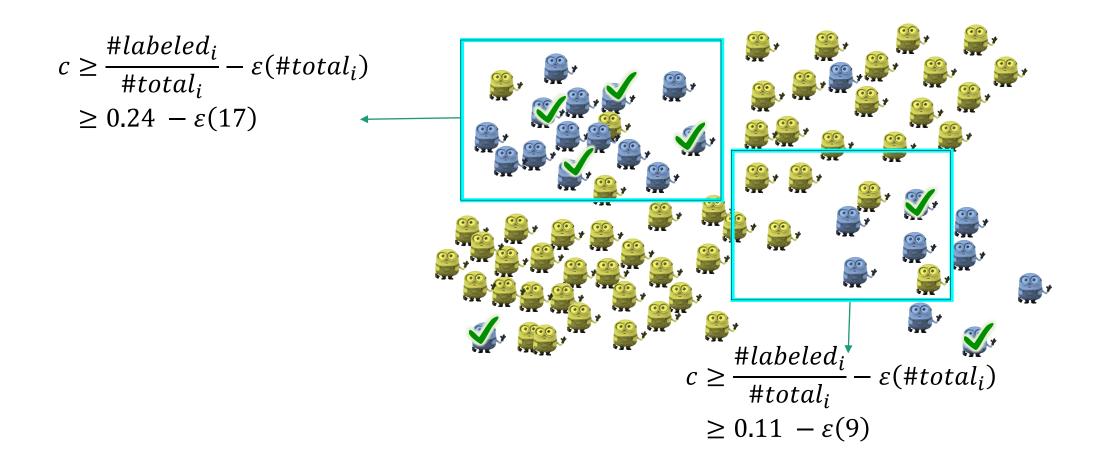
Insight 1: Data Implies Lower Bound on c



Insight 2: Positive Subsets Give Very Tight Bounds



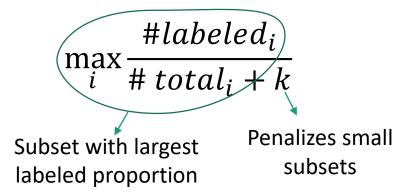
Insight 3: Highly Labeled Subsets are Likely Positive

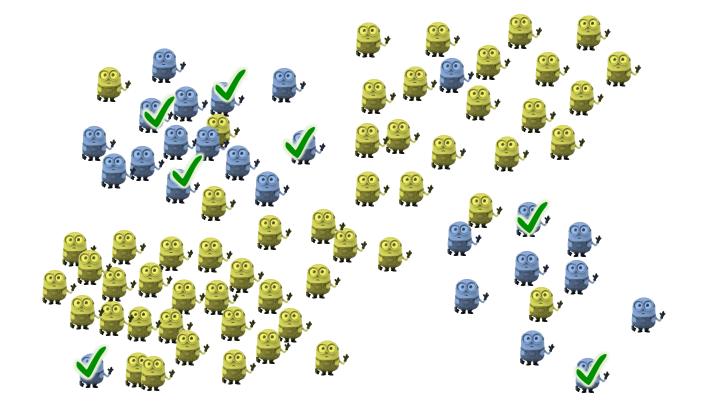


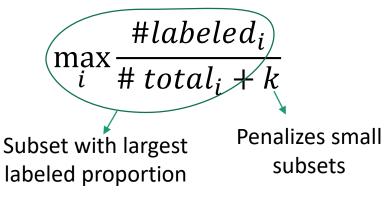
Tree Induction for c Estimation (TIcE)

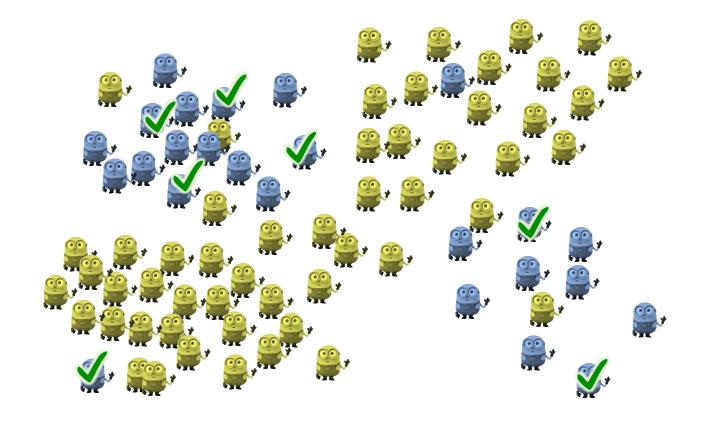
Step 1: Look for highly labeled subsets using decision tree induction

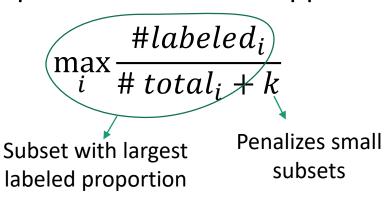
Step 2: Estimate *c* by taking the maximum lower bound of subsets

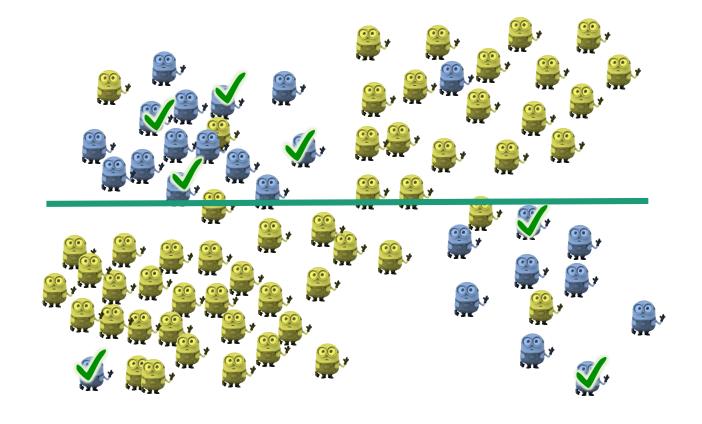


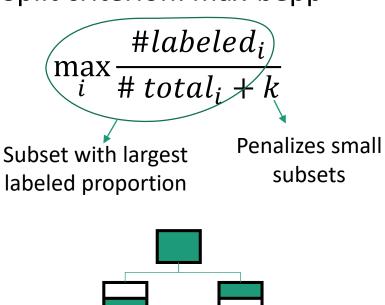


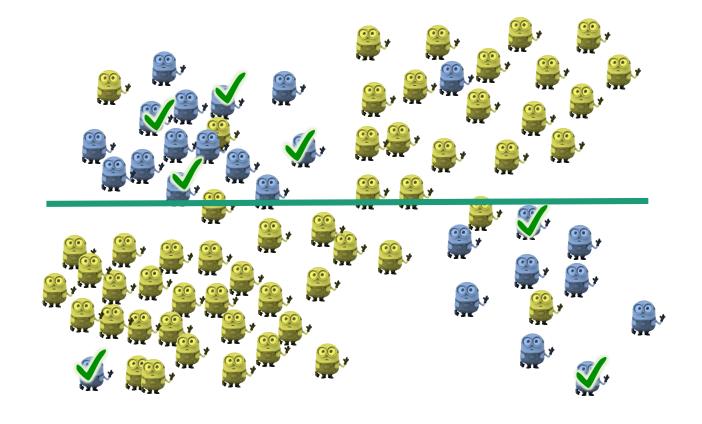


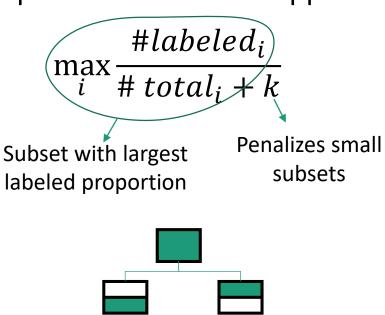


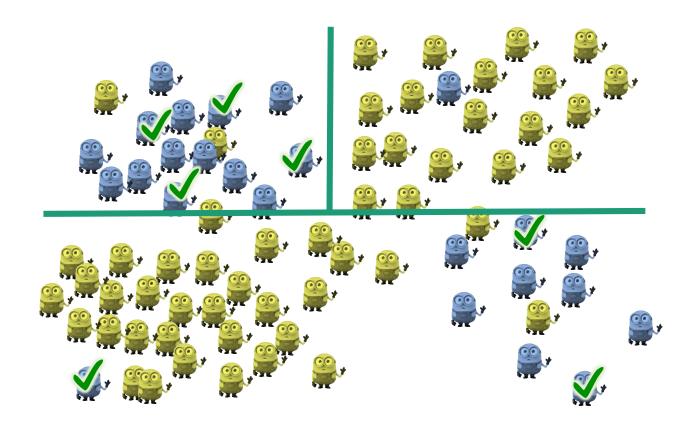


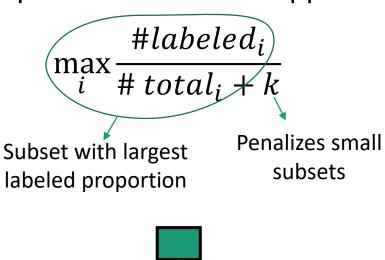


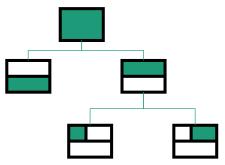


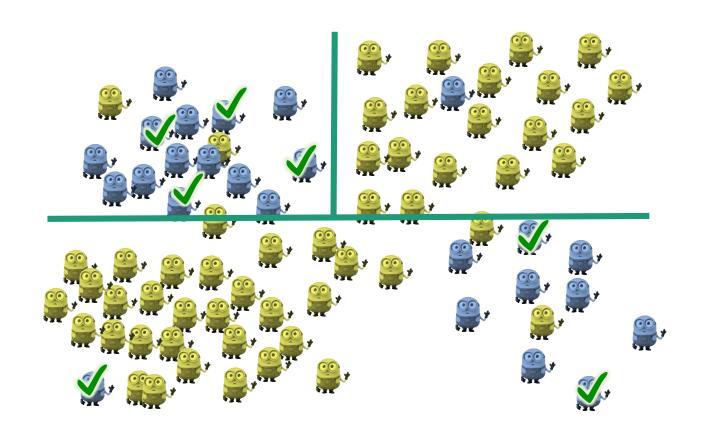




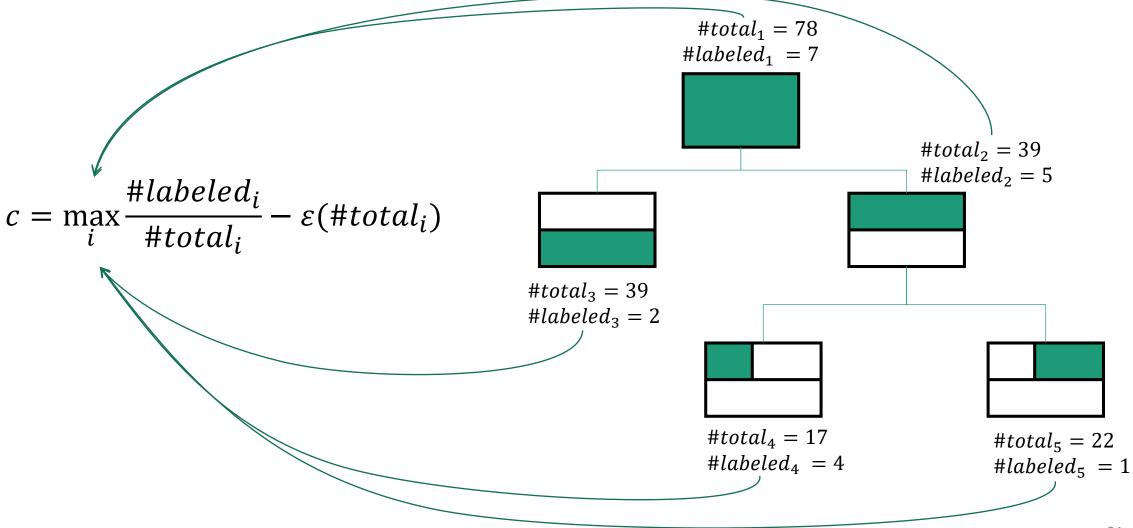




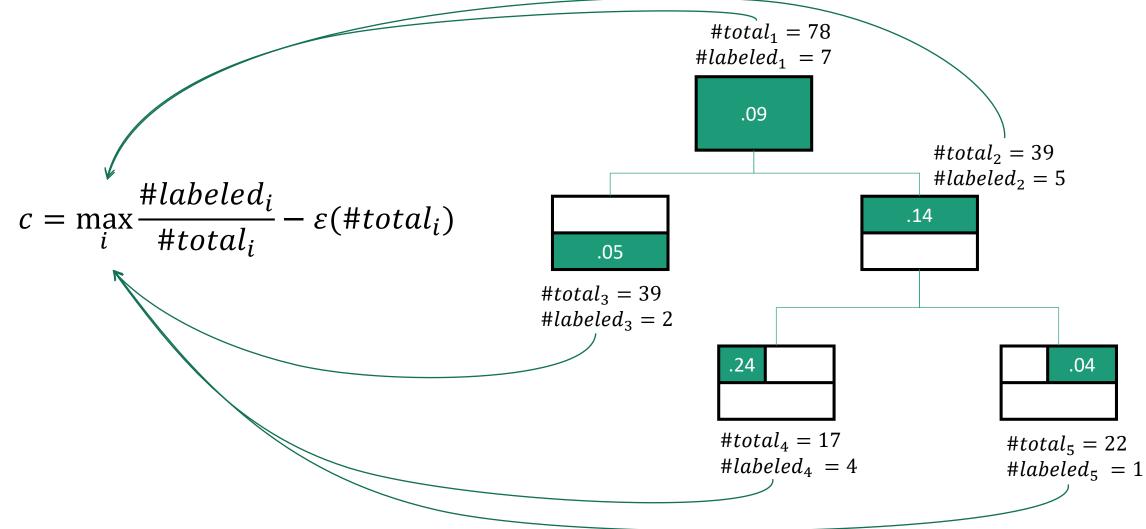




TIcE: c Estimation with Tree-Implied Subsets



TIcE: c Estimation with Tree-Implied Subsets



TIcE: Prevent Overfitting

Selecting subsets based on labels

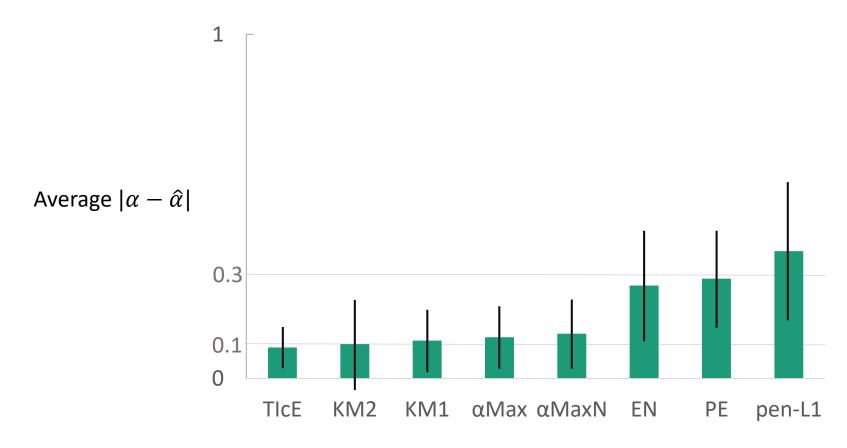
⇒ likely to find subsets with a higher empirical label frequency.

Solution:

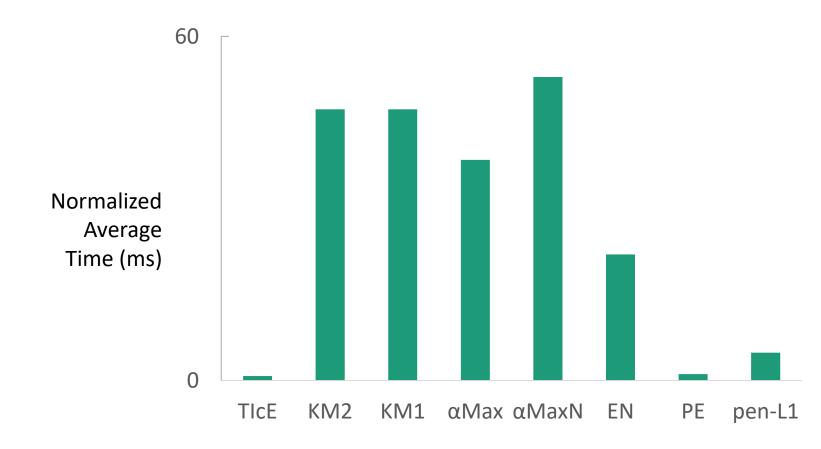
Different datasets for tree induction and c estimation

~ k-fold cross validation

TIcE is Accurate



TIcE is Fast



Conclusions

- PU learning is very useful in practice
- Knowing the class prior α makes PU learning easier
- TIcE estimates α from PU data
 - Simple
 - Accurate
 - Fast

