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Abstract

For tasks such as medical diagnosis and knowledge base com-
pletion, a classifier may only have access to positive and un-
labeled examples, where the unlabeled data consists of both
positive and negative examples. One way that enables learn-
ing from this type of data is knowing the true class prior. In
this paper, we propose a simple yet effective method for es-
timating the class prior, by estimating the probability that a
positive example is selected to be labeled. Our key insight is
that subdomains of the data give a lower bound on this prob-
ability. This lower bound gets closer to the real probability as
the ratio of labeled examples increases. Finding such subsets
can naturally be done via top-down decision tree induction.
Experiments show that our method makes estimates which
are equivalently accurate as those of the state of the art meth-
ods, and is an order of magnitude faster.

Introduction
Traditional approaches to supervised learning for binary
classification assume a fully labeled training set consisting
of positive and negative examples. In many applications, a
learner may only have access to positive examples and un-
labeled examples, which may be either positive or negative.
This special case of semi-supervised learning is commonly
called positive and unlabeled (PU) learning.

The following are four illustrative examples of domains
where PU data may arise. First, medical records usually
only list the diagnosed diseases for each person and not
the diseases the person does not have. However, many dis-
eases, such as diabetes, are often undiagnosed (Claesen et
al. 2015b). Therefore, the absence of a diagnosis does not
mean that the patient does not have a disease. Second, the
task of knowledge base (KB) completion is also inherently a
positive and unlabeled problem. Automatically constructed
KBs are necessarily incomplete and only contain true facts.
The truth values of the facts not included in the KB are
unknown and not necessarily false (Galárraga et al. 2015;
Neelakantan, Roth, and McCallum 2015). Third, similar to
the above scenario, there are many specialized but incom-
plete gene databases (Elkan and Noto 2008). Finally, text
classification can also be characterized by positive and unla-
beled data (Lee and Liu 2003; Liu et al. 2003). For example,
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classifying a user’s web page preferences could use book-
marked pages as positive examples and all other pages as
unlabeled ones.

Several approaches exist to deal with positive and unla-
beled data. The most straightforward one is to assume that
all the unlabeled data are negative and simply apply stan-
dard machine learning techniques (Neelakantan, Roth, and
McCallum 2015). A second approach is to select some of
the unlabeled examples that are very different from the pos-
itively labeled ones and label them as negative. A classifier
is then learned using the given positive examples and in-
ferred negative examples (Liu et al. 2002; Li and Liu 2003;
Yu, Han, and Chang 2004; Yu 2005; Li et al. 2009; Nguyen,
Li, and Ng 2011). A third approach is to employ an eval-
uation metric that only uses positive, or positive and unla-
beled data (Muggleton 1996; Lee and Liu 2003; Claesen et
al. 2015a). Using this metric, one can tune for the best class
weights or regularization settings (Lee and Liu 2003; Liu
et al. 2005; Mordelet and Vert 2014; Claesen et al. 2015c).
A final approach is to explicitly consider the class prior. It
can be used to either adapt algorithms to incorporate this
information during learning (Denis 1998; Liu et al. 2003;
Zhang and Lee 2005; Denis, Gilleron, and Letouzey 2005;
Elkan and Noto 2008) or as a preprocessing step to assign
weights to the unlabeled examples (Elkan and Noto 2008).
Because the class prior is often not known, several meth-
ods were proposed in the last decade to estimate it from
the positive and unlabeled data (Elkan and Noto 2008; du
Plessis and Sugiyama 2014; du Plessis, Niu, and Sugiyama
2015; Jain, White, and Radivojac 2016; Jain et al. 2016;
Ramaswamy, Scott, and Tewari 2016)

This paper focusses on the last task and presents a novel
method for estimating the class prior. It exploits the “se-
lected completely at random” assumption which says that
each positive example has a constant probability c to be se-
lected to be labeled, c is referred to as the label frequency.
With this assumption, the label frequency functions as a
proxy for the class prior. Our method is based on two main
insights. First, the label frequency holds in subdomains of
the attributes and the probability for examples to be labeled
in a subdomain provides a lower bound for it. Second, sub-
domains with a higher probability of labeled examples yield
better estimates. This last insight suggests that finding dis-
criminative partitions in the data will yield good estimates of



the label frequency. Finding such partitions is exactly what
top-down decision tree induction algorithms do to select a
test for an internal node. Therefore, we propose a decision
tree-based approach for estimating the label frequency. With
extensive experiments, we show that this simple technique
gives stable estimates that are equivalently accurate to the
state-of-art methods but is an order of magnitude faster. The
implementation and extra materials are available online.1

Problem Setup
Positive and unlabeled (PU) learning attempts to learn a bi-
nary classifier while only having access to positively labeled
and unlabeled data. An example is represented by {x, y, s},
where x are its attributes, y the true class and s the label.
Only positive examples are labeled: s = 1 ⇒ y = 1, and
unlabeled examples s = 0 can be of any class y. The number
of positive, negative, positively labeled, and total number of
examples in a data (sub)set are P , N , L and T respectively.

A common assumption in PU learning is the “selected
completely at random” assumption, which states that the
labeled dataset is selected completely at random from the
entire positive set, i.e., the label and the attributes are con-
ditionally independent given the true class (Denis 1998;
De Comité et al. 1999; Liu et al. 2003; Zhang and Lee 2005;
Elkan and Noto 2008). Hence, any positive example has ex-
actly the same probability to be selected to be labeled as any
other positive example, independent of its attributes:

Pr(s = 1|x, y = 1) = Pr(s = 1|y = 1). (1)

We refer to this probability as the label frequency c =
Pr(s = 1|y = 1). From the assumption follows the fol-
lowing property (Elkan and Noto 2008):

Pr(y = 1|x) = 1

c
Pr(s = 1|x). (2)

Elkan and Noto (2008) showed that knowing the label fre-
quency c greatly simplifies PU learning because it enables
using Equation (2) in one of three ways. First, a probabilistic
classifier can be trained to predict Pr(s = 1|x) and the out-
put probabilities can be adjusted using Equation (2). Second,
the same classifier and Equation (2) can be used to weight
the unlabeled data, and then a different classifier can be
trained on the weighted data. Third, Equation (2) can be used
to modify a learning algorithm. For example, count-based al-
gorithms, like tree induction and naive Bayes, only consider
the number of positive and negative examples in attribute-
conditioned subsets of the data. In PU data these numbers
are expected to be P̂ = L/c and N̂ = T − P̂ (Denis 1998;
De Comité et al. 1999; Denis et al. 2003).

The label frequency, or equivalently the class prior α =
Pr(s = 1)/c can be obtained in three ways: 1) from domain
knowledge, 2) by estimating it from a small fully labeled
data set (De Comité et al. 1999), or 3) by estimating it di-
rectly from the PU data (Elkan and Noto 2008; du Plessis,
Niu, and Sugiyama 2015; Jain, White, and Radivojac 2016;
Ramaswamy, Scott, and Tewari 2016). We present a simple,
yet effective method for the last option.

1https://dtai.cs.kuleuven.be/software/tice

Bounding and Estimating the Label
Frequency Using Tree Induction

In this work, we aim to estimate the label frequency by con-
sidering subdomains of the attributes based on partial as-
signments. For ease of derivation, we assume discrete vari-
ables. The use of subdomains is possible because of the “se-
lected completely at random” which implies label frequen-
cies being equal in any subdomain A. This can be derived
using the law of total probability and Equation (1).

Pr(s = 1|x ∈ A, y = 1)

=
∑
x′

Pr(s = 1, x = x′|x ∈ A, y = 1)

=
∑
x′∈A

Pr(s = 1, x = x′|x ∈ A, y = 1)

=
∑
x′∈A

Pr(s = 1|x = x′, y = 1)Pr(x = x′|x ∈ A, y = 1)

= Pr(s = 1|y = 1)
∑
x′∈A

Pr(x = x′|x ∈ A, y = 1)

= Pr(s = 1|y = 1) = c. (3)

Therefore, the label frequency is the ratio of the probabil-
ities to be labeled and to be positive in any subdomain A:2

c =
Pr(s = 1|x ∈ A)
Pr(y = 1|x ∈ A)

. (4)

If A is a positive subdomain Pr(y = 1|x ∈ A) = 1,
the probability of being labeled in this subdomain equals the
label frequency. In general, the probability is a lower bound
for the label frequency because probabilities are at most 1:

c ≥ Pr(s = 1|x ∈ A). (5)

Label Frequency Lower Bound from Data Subset
Using (5), we can use any attribute-conditioned subset of
the data, with L labeled and T total examples, to estimate a
lower bound on c. Naively, this would be c ≥ L/T . How-
ever, because of the stochastic nature of the labeling, more
positive examples might be labeled than expected. There-
fore, we include an error term ε = 1/2

√
(1− δ/δT ) that

shrinks with the sample size T . The error term is derived
from the one-sided Chebyshev inequality. This inequality
provides a lower bound on the probability of the number of
labeled examples L exceeding the expected number µ by at
least λ, based on the labeling variance σ2. The probability
lower bound is set to δ = σ2/(σ2 + λ2).

Pr (L ≥ µ+ λ) ≤ σ2

σ2 + λ2

Pr

(
L ≥ µ+

√
(1− δ)σ2

δ

)
≤ δ.

Labeling positive examples follows the Binomial distribu-
tion, because, each positive example in the subdomain is in-
dependently labeled with a probability c. Therefore, µ = cP

2Analogous to the derivation of (2) in (Elkan and Noto 2008)



and σ2 = c(1−c)P . Substituting µ and σ, and using P ≤ T ,
gives a probabilistic lower bound for c:

Pr

(
L− cT ≥

√
(1− δ)c(1− c)T

δ

)
≤ δ

Pr

(
c ≤ L

T
−
√

(1− δ)c(1− c)
δT

)
≤ δ. (6)

The error term depends on c. But by using probability
properties: c(1− c) < 0.25, a lower bound with probability
at least 1− δ can be calculated using only T and L:

Pr

(
c ≤ L

T
− 1

2

√
1− δ
δT

)
≤ δ. (7)

Interesting Subsets
Using the lower bound in Equation (7) to estimate the true
label frequency c, requires calculating it in a subset where
the bound is tight. This is the case in large (almost) purely
positive subsets. The positive probability is directly propor-
tional to the labeled probability, therefore, positive subdo-
mains are expected to have a high ratio of labeled examples.
Mostly positive subdomains are therefore likely to be found
when looking for highly labeled regions in the data.

If a subset is selected because it has a high number of
labeled examples, it is likely that the number of labeled ex-
amples will exceed the expected number cP . Therefore, the
bound in Equation (7) does not hold in such a subset. This
issue is resolved by using independent datasets to 1) identify
interesting subdomains and 2) calculate the lower bound. To
intuitively see that it is resolved, consider datasets D1 and
D2 which are independently sampled from the probability
distribution Pr(x, y). D1 is labeled following the “selected
completely at random” assumption by throwing a die for
each positive example. Now we look for a subdomain that
has a high proportion of labeled examples in D1. Next, D2
is labeled using the same procedure, therefore each positive
example in the previously found subdomain has the same
probability to be labeled as any other example. The proba-
bilities are unaffected by the subdomain search procedure.
Labeling D2 first does not change the search procedure, en-
suring unaffected probabilities forD2 that are usable for cal-
culating the lower bounds.

Tree Induction for Label Frequency Estimation
We propose a novel method TIcE (Tree Induction for c Es-
timation) for estimating the label frequency from PU data,
which is summarized in Alg. 1. The algorithm is based on
the insights of the previous sections: It splits the dataset into
two separate sets, looks for interesting, i.e., likely positive,
subdomains using one set and estimates c using the other
set by taking the tightest lower bound that is calculated in
the interesting subdomains. Looking for pure subsets in the
data is also the objective of decision tree induction, therefore
TIcE looks for pure labeled subsets by inducing a decision
tree, considering the unlabeled data as negative.

Folds The separate datasets are referred to as the tree data
and the estimation data, the former is used for inducing the
tree and the later for estimating the label frequency using
the subdomains. To make robust estimates, the process is re-
peated for k folds: the training data is divided into k random
equal-sized subsets and in every fold, 1 subset is used as tree
data, the rest as estimation data. The estimate is the average
of the estimates of the folds.

Max clow The label frequency is estimated as the maxi-
mum lower bound calculated in multiple subsets of the es-
timation data. The maximum invalidates the lower bound
of Equation (7) because although each lower bound has a
probability 1− δ of holding, the probability of all the lower
bounds holding is smaller. The maximum could be avoided
by only calculating the lower bound on one subdomain. The
most promising subdomain is selected solely based on the
tree data. This would ensure a correct lower bound with
probability 1 − δ. However, we argue that the maximum
would work better in practice. The lower bound is very loose
and is only likely to get close to the true c in the rare case of a
completely positive subset. By only taking one lower bound,
the chance that a lower bound is calculated in a purely posi-
tive subset decreases. Especially with a low label frequency,
it is hard to predict which subdomains are positive. More-
over, the goal of TIcE is not to find a lower bound, it is
to find a close estimate which does not need to be a lower
bound. This decision is evaluated in the experiments section.

Split The objective of standard decision tree induction is
finding pure nodes. Here, only pure positive nodes are of
interest. To reflect this, the maximum biased estimate for the
proportion of positives (max-bepp) score is used (Blockeel,
Page, and Srinivasan 2005). It selects the split that gives the
subset with the highest bepp: P

T+k , where the parameter k
acts like the Laplace parameter to prefer larger subsets.

Tighter bound with ĉ Equation (7) assumes the worst
case of c = 0.5, making the error term larger than neces-
sary in most cases. An initial estimate cprior, used in Equa-
tion (6) makes a more accurate estimate. Therefore, TIcE
first induces a tree and to estimate cprior and then repeats the
process to estimate ĉ, using cprior.

Choosing δ To calculate lower bounds, the parameter δ
needs to be supplied. Its optimal value depends on the ap-
plication and the data dimensions. δ can be chosen by sup-
plying the minimum number of examples TR that should be
required to calculate a lower bound with some error term ε:
δ = 1

1+4ε2TR
.

We propose a simple rule for choosing δ, which we eval-
uate in the experiments section. Big datasets, that contain
more than 10,000 examples require 1,000 examples to up-
date clow with an error of ε = 0.1. Smaller datasets need one
tenth of their data: TR = min[1000, 0.1T ]. Therefore:

δ = max

[
0.025 ,

1

1 + 0.004T

]
. (8)



Algorithm 1: TIcE (k,M, f)

Input: k: max-bepp parameter
M : maximum number of splits
f : tree/estimation folds

Result: ĉ
ĉ← 0.5 ;1
for i = 0 ; i < 2 ; i++ do2
ĉs← [] ;3
for (tree data, estimation data) ∈ f do4

δ ← max
[
0.025, 1

1+0.004T (estimation data)

]
;5

cbest ← L(estimation data)
T (estimation data) ;6

q ← [(tree data, estimation data)];7
for j = 0 ; j < Mand |q| > 0 ; j++ do8

(St, Se)←9

argmax
(St,Se)∈q

[
L(St)
T (St)

−
√

ĉ(1−ĉ)(1−δ)
δT (St)

]
;

q.remove ((St, Se));10

a∗ = argmax
a∈atts(Se)

max
v∈Dom(a)

L({St : a=v})
T ({St : a=v})+k ;

11

for v ∈ Dom(a∗) do12
q.append (({St : a∗ = v}, {Se : a∗ = v})) ;13

clow = L({Se:a
∗=v})

T ({Se:a∗=v}) −
√

ĉ(1−ĉ)(1−δ)
δT ({Se:a∗=v}) ;14

cbest ← max (cbest , clow) ;15

ĉs.append(cbest) ;16

ĉ← avg(ĉs);17

Speed Top-down decision tree induction is an efficient al-
gorithm but can be further sped up by limiting the number of
splits to a constant. Limiting the splits with optimal quality
preservation is achieved by executing the splits in a best-
first order. For this, the nodes need to be scored to indicate
which one is most likely to result in good subsets. TIcE uses
the lower bound provided by the node data, which needs to
be calculated in the tree data to prevent overfitting.

Complexity The worst case time complexity of TIcE is
O(mn), with n the number of examples n and m the num-
ber of attributes, assuming that each attribute’s domain size
is at most d. The size of the queue q can never exceed
(d− 1) ·M , therefore, all queue operations (lines 9, 10 and
13) have a constant worst-case time complexity. Nodes are
recursively split in lines 9 to 15. Finding the best attribute to
split on (line 11), requires going over all available attributes
and all the tree data in the node, which has a complexity
O(mn/|f |) = O(mn). The estimation data will be split
on the found attribute (needed in lines 13 and 14), which
has complexity O(n(|f | − 1)/|f |) = O(n). Lines 12 to 15
have complexityO(d) because for each value of the domain,
constant-time operations are executed. The total complexity
of splitting a node is thus O(nm + n + d) = O(nm). The
loops of lines 2,4 and 8 each have a constant number of iter-
ations: 2, |f | and M and, thus, do not alter the complexity.

Related Work

The first work to consider the label frequency explicitly is
Elkan and Noto (2008). Their insight is that a probabilistic
classifier trained on PU data is expected to classify positive
examples as positive with a probability c. To estimate c, they
train a classifier on part of the data and predict the probabil-
ities of the positively labeled examples in the other part. ĉ is
the average of the predicted probabilities. Another estimator
they proposed was the highest predicted probability by the
trained classifier on an example in the validation set. They
discarded this estimator because of its high variability. This
estimator is very related to TIcE, but two important differ-
ences make TIcE more reliable. First, Elkan and Noto’s es-
timator only uses one data point for estimation. Second, the
parameters of the model, and thus the prediction, are based
on the training data, while TIcE computes its estimate from
the validation data.

Recently several mixture proportion estimation methods
have been developed to estimate the class prior in PU data.
Their intuition assumes the case-control scenario, where
the positive dataset is seen as a distribution and the unla-
beled data as the mixture of the positive distribution and an
unknown negative distribution (Blanchard, Lee, and Scott
2010; Sanderson and Scott 2014; Scott 2015). The next para-
graphs describe such methods in more detail.

du Plessis and Sugiyama (2014) aim to find the class
prior using partial matching. They estimate α̂ by minimizing
the Pearson divergence between Pr(x) and αPr(x|y = 1),
where the two distributions are estimated from the unlabeled
and positively labeled data respectively. If the support of the
two classes is not disjoint, this method always overestimates
the class prior. To correct this, du Plessis, Niu, and Sugiyama
(2015) propose to use a biased penalty that heavily penalizes
estimates α̂ that unrealistically imply that in some subdo-
mains of the distributions αPr(x|y = 1) > Pr(x).

Jain et al. (2016) propose to model the mixture of the pos-
itive and negative distributions using kernels and model the
positive distribution by reweighting the kernels. The weights
represent how much the positive distribution contributes to
each kernel, therefore, the class prior is the sum of the
weights. They find the optimal weights by maximizing the
class prior simultaneously with the likelihood of the mixture
and positive distribution in the unlabeled and positively la-
beled data. Ramaswamy, Scott, and Tewari (2016) propose a
similar method but instead of using the likelihood, they use
the distance between kernel embeddings. These methods as-
sume the labeled data to have no false positives. Jain, White,
and Radivojac (2016) allow for noisy labeled data by also
considering the labeled data to be generated by a mixture.

Experiments

We aim to gain insight in the performance of TIcE. First,
we check if in practice it is better to take the maximum of
lower bounds or to use one lower bound. Second, we eval-
uate our method for setting δ. Finally, we compare TIcE to
other class prior estimation algorithms.
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Figure 1: Taking the maximum lower bound vs most promising subdomain, for representative datasets in the PU setting. The
true label frequency is varied on the x-axis. The lower the error, the better. Using the maximum gives better results, especially
for lower frequencies. All other results are available in the online appendix.
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Figure 2: Sensitivity to TR, for representative datasets in the PU setting. The number of examples to update clow with an error
ε = 0.1 is varied on the x-axis. TIcE is not very sensitive to TR. All other results are available in the online appendix.

Table 1: Datasets

Dataset # Examples # Vars Pr(y = 1)
Breast Cancer 683 9 0.350
Mushroom 8,124 21 0.482
Adult 48,842 14 0.761
IJCNN 141,691 22 0.096
Cover Type 536,301 54 0.495
20ng comp vs rec 5,287 200 0.450
20ng comp vs sci 5,279 200 0.450
20ng comp vs talk 4,856 200 0.401
20ng rec vs sci 4,752 200 0.499
20ng rec vs talk 4,329 200 0.450
20ng sci vs talk 4,321 200 0.451

Data

We use 11 real-world datasets that are summarized in Ta-
ble 1. IJCNN was used for the IJCNN 2001 neural net-
work competition3 (Prokhorov 2001). All the others are
UCI4 datasets. Features were generated for the twenty news-
groups data (20ng) using bag of words with the 200 most
frequent words, disregarding nltk stopwords. Binary classi-
fication tasks were defined by classifying pairs of general
categories (computer, recreation, science, and talk). All the
multivalued features were binarized and the numerical fea-
tures were scaled between 0 and 1.

3Available on: https://www.csie.ntu.edu.tw/
˜cjlin/libsvmtools/datasets/

4http://archive.ics.uci.edu/ml/

Table 2: Sensitivity to TR

% |α̂− α| (all) |α̂− α| (3 largest datasets)
50 0.092 0.084
75 0.089 0.079

100 0.090 0.095
125 0.135 0.108
150 0.170 0.127

Methods
To create PU datasets from the completely labeled datasets,
the positive examples are selected to be labeled with label
frequencies c ∈ [0.1, 0.3, 0.5, 0.7, 0.9]. In addition to PU
datasets, NU datasets were generated by labeling negative
examples with the same frequencies. Per label frequency and
class label, 5 different random labelings were executed. In
total there are 11 · 2 · 5 · 5 = 550 settings.

We fixed all the hyperparameters of our method TIcE, be-
cause, in the considered context, no supervised validation
dataset is available for tuning. The max-bepp parameter is
k = 5 as in the original paper. The maximum number of
splits is M = 500, which is expected to be large enough
in any setting because of the best-first ordering. δ was set
using Equation (8) on the estimation data in each fold. The
number of folds is 5. All experiments are repeated 5 times
with different random folds. If a node is split on a numerical
feature, the range is split into 4 equal parts. When only the
most promising subdomain is considered, this subdomain is
selected by calculating lower bounds on the tree data. The
implementation and additional results are available online.5

5https://dtai.cs.kuleuven.be/software/tice
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Figure 3: Time comparison between different methods, for representative datasets in the PU setting. The true label frequency
is varied on the x-axis. TIcE is consistently fast. All other results are available in the online appendix.

Table 3: Time comparison between different methods.

Method Average time per example (ms)
TIcE 0.76
PE 1.10

pen-L1 4.84
EN 21.96

AlphaMax 38.47
KM1/KM2 47.28

AlphaMax N 52.92

We compared to the following class prior estimation
methods that also make the “selected completely at random”
assumption: EN (Elkan and Noto 2008), PE (du Plessis and
Sugiyama 2014), pen-L1 (du Plessis, Niu, and Sugiyama
2015), KM1 and KM2 (Ramaswamy, Scott, and Tewari
2016), AlphaMax (Jain et al. 2016) and AlphaMax N (Jain,
White, and Radivojac 2016).6 KM1 and KM2 cannot handle
large datasets. Therefore, like the authors of those papers,
we subsampled the datasets to have at most 2000 examples
and repeated the process five times. The implementation also
does not estimate a class prior on the smallest dataset Breast
Cancer.

For all the experiments, the absolute error on the class
prior |α̂ − α| and CPU time were measured. The label fre-
quency c is converted to the class prior with α̂ = L/(ĉT ).
To evaluate using Equation (8) to set δ, its sensitivity to TR
is analyzed. To this end, in addition to using the proposed
value T ∗R = min[1000, 0.1T ], the experiments were also ex-
ecuted with TR ∈ {0.5, 0.75, 1.25, 1.5} · T ∗R.

All experiments are executed on a Red Hat Enterprise
Linux ComputeNode with access to 24G RAM and 1 core
of a Xeon E5-2680v2 CPU.

6The code for PE was taken from http://www.
mcduplessis.com/index.php/class-prior-
estimation-from-positive-and-unlabeled-
data/ and for KM1 and KM2 from http://web.eecs.
umich.edu/˜cscott/code/kernel_MPE.zip. The code
for pen-L1 was the same as in (du Plessis, Niu, and Sugiyama
2015). The code for AlphaMax, AlphaMax N and EN were the
same as in (Jain, White, and Radivojac 2016). These were acquired
through personal communication.

Results
Using the maximum of lower bounds often gives better es-
timates for the label frequency and is never worse than only
using the lower bound of the “most promising” subdomain
(Fig. 1). This is in line with our expectations. When little
data is available, like for Breast Cancer, predicting the “most
promising” subdomain is even more challenging. For Adult,
both methods work fine because it has a high class prior.

Changing TR does not change the estimates much, espe-
cially when the the dataset is large (Fig. 2 and Table 2). In
fact, our rule (8) is usually overly conservative. We did not
change the rule because that would be tuning on the test data.

When comparing the absolute error |α̂ − α| between dif-
ferent methods, we see that TIcE is equivalently accurate as
the state of the art (Fig. 4 and Table 4). Its average rank ac-
cording to |α̂ − α| is the second best, after KM2, and it has
the lowest average absolute error. Note that it is also very
stable, its predictions are never off much by much. This is re-
flected in its standard deviation, which is the lowest of all the
methods. For comparison, look at the results of KM2. This
is usually the most accurate estimator, but when it does not
have access to many labels (e.g. 20ng Rec vs Sci, c = 0.1), it
is biased too much towards 0.5 which results in large errors.
Tice’s stability is owed to two reasons: First, overestimates
are rare because of the conservative lower bounds. Second,
a tight lower bound is likely to be found because it is likely
that some subdomain exists that is (close to) purely positive.

TIcE is a fast method, the other estimators that are equiv-
alent or slightly worse (KM2, AlphaMax N, AlphaMax) are
more than an order of magnitude slower (Fig. 3 and Table 3).
Speedwise, PE comes closest to TIcE, however, it gives less
accurate estimates for the class prior. Note that KM1 and
KM2 seem to have reasonable times for big datasets such as
Cover Type, this is because it uses a subsample of the data
instead of the full dataset.
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Figure 4: Absolute class prior error comparison between different methods, for PU datasets. The true label frequency is
varied on the x-axis. The lower the error, the better. TIcE gives stable estimates, with an average error 0.09 and standard
deviation 0.06. The plots for the NU datasets are available in the online appendix.

Table 4: Absolute class prior error comparison between different methods. TIcE is the second-best method when considering
the rank in all settings. However, it has the best average performance and lowest standard deviation, therefore, it is more reliable.

Method Average |α̂− α| rank +/- SD Average |α̂− α| +/- SD
KM2 2.83 +/- 2.03 0.10 +/- 0.13
TIcE 3.22 +/- 1.82 0.09 +/- 0.06

AlphaMax N 3.42 +/- 1.89 0.13 +/- 0.10
AlphaMax 3.51 +/- 1.38 0.12 +/- 0.09

KM1 4.04 +/- 1.19 0.11 +/- 0.09
EN 5.84 +/- 1.62 0.27 +/- 0.16
PE 6.16 +/- 1.39 0.29 +/- 0.14

pen-L1 6.88 +/- 1.86 0.37 +/- 0.20



Conclusions
In this paper, we propose a simple yet effective method for
estimating the class prior. The method is based on the insight
that the label frequency (which serves as a proxy for the
class prior) is expected to be the same in any subdomain of
the attributes. As a result, subsets of the data naturally imply
lower bounds on the label frequency. The lower bounds will
be tight when the subset belongs to a positive subdomain.
Finding likely positive subdomains can easily be done using
decision tree induction based on the PU data. Despite the
simplicity of the method, it gives good and stable estimates.
The experiments show that this method is equivalently accu-
rate to the state of the art but an order of magnitude faster.

Acknowledgements
We thank Hendrik Blockeel and Adrian Dunne for their
valuable advice. JB is supported by IWT (SB/141744).
JD is partially supported by the KU Leuven Research
Fund (C14/17/070, C22/15/015, C32/17/036) and FWO-
Vlaanderen (G.0356.12, SBO-150033).

References
Blanchard, G.; Lee, G.; and Scott, C. 2010. Semi-supervised
novelty detection. JMLR 2973–3009.
Blockeel, H.; Page, D.; and Srinivasan, A. 2005. Multi-
instance tree learning. In ICML, 57–64.
Claesen, M.; Davis, J.; De Smet, F.; and De Moor, B. 2015a.
Assessing binary classifiers using only positive and unla-
beled data. arXiv preprint arXiv:1504.06837.
Claesen, M.; De Smet, F.; Gillard, P.; Mathieu, C.; and
De Moor, B. 2015b. Building classifiers to predict the start
of glucose-lowering pharmacotherapy using belgian health
expenditure data. arXiv preprint arXiv:1504.07389.
Claesen, M.; De Smet, F.; Suykens, J.; and De Moor, B.
2015c. A robust ensemble approach to learn from positive
and unlabeled data using svm base models. Neurocomputing
73–84.
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