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Positive and Unlabeled Data: Label
Frequency ¢

Positive examples get labeled
with constant probability ¢

¢ = P(labeled | positive, facts)
= P(labeled | positive)



Label Frequency ¢ = 1.0 ( = Supervised
data)




Label Frequency ¢ =0.75




Label Frequency ¢ = 0.5
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Label Frequency ¢ = 0.25




Label Frequency ¢ = 0.1




Nailve Classification: Unlabeled =
Negative




Common Solution: Conjunctive Concept

[Muggleton, 1996]



State of the Art in Propositional PU

Knowing the label frequency c
makes PU learning easy

[Elkan and Noto, 2008]



Using the Label Frequency ¢

P(labeled|facts)
c

P(positive|facts) =

Method 1: Probabilistic classifier that learns P(labeled|facts)
E.g. Tilde: Probabilistic Relational Decision Trees

Method 2: Adjust learning algorithm using c:
P=L/c and N=T-P
E.g. Aleph: adjust score function

Supervised: Coverage = P-N
PU: Coverage = L/c-(T-L/c) =2L/c-T
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How Can we Know the Label Frequency
c”?

1. Domain knowledge of class proportions

2. Sample and label subset of the data

3. Estimate directly from the data

* Only propositional methods exist

* Recent method is adaptable for relational settings

[Bekker&Davis, under review]



Lower bound

P<T =™ =
T =178

L =7
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c =>—=0.09

n ¢ from Data




Estimate ¢ from Data (TICER)

* Insight 1: Data subset implies lower bound on c

L
c =2 i e(T)
T .
| Error term from 1-sided

Chebyshev inequality
*Insight 2: Positive subsets give very tight bounds

*Insight 3: Highly labeled subsets are likely positive

Look for those through decision tree induction (Tilde)
Use subsets to tighten lower bound
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Intuition of TICER
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Intuition of TICER
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Intuition of TICER
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TIcER: Practical issues

Selecting subsets based on labels

_likely to find subsets with a higher empirical label
frequency.

Solution:
Different datasets for tree induction and c estimation
~ k-fold cross validation



Experimental results

. Estimate ¢ from subsets found with Tilde
. use c to adjust 1) Tilde and 2) Aleph

. Compare with [Muggleton, 1996]



Experimental results
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Experimental results
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Conclusion

* Knowing the label frequency makes PU learning easier

* Our method is capable of learning disjunctive concepts
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Questions?



