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Abstract. Many applications, such as knowledge base completion and
automated diagnosis of patients, only have access to positive examples
but lack negative examples which are required by standard relational
learning techniques and suffer under the closed-world assumption. The
corresponding propositional problem is known as Positive and Unlabeled
(PU) learning. In this field, it is known that using the label frequency
(the fraction of true positive examples that are labeled) makes learning
easier. This notion has not been explored yet in the relational domain.
The goal of this work is twofold: 1) to explore if using the label frequency
would also be useful when working with relational data and 2) to propose
a method for estimating the label frequency from relational positive and
unlabeled data. Our experiments confirm the usefulness of knowing the
label frequency and of our estimate.

1 Introduction

Relational classification traditionally requires positive and negative examples to
learn a theory. However, in many applications, it is only possible to acquire
positive examples. A common solution to this issue is to make the closed-world
assumption and assume that unlabeled examples belong to the negative class.
In reality, this assumption is often incorrect, for example: knowledge bases are
incomplete [1], diabetics often go undiagnosed [2] and people do not bookmark
all interesting pages. Considering unlabeled cases as negative is therefore sub-
optimal. To cope with this, several score functions have been proposed that use
only positive examples [3–5].

In propositional settings, having training data with only positive and unla-
beled examples is known as Positive and Unlabeled (PU) learning. It has been
noted that if the class prior is known, then learning in this setting is greatly
simplified. Specifically, knowing the class prior allows calculating the label fre-
quency, which is the probability of a positive example being labeled. The label
frequency is crucial as it enables converting standard score functions into PU
score functions that can incorporate information about the unlabeled data [6].
Following this insight, several methods have been proposed to estimate the label
frequency from PU data [7–10]. To the best of our knowledge, this notion has
not been exploited in relational settings. We propose a method to estimate the



label frequency from relational PU data and a way to use this frequency when
learning a relational classifier.

Our main contributions are: 1) Investigating the helpfulness of the label fre-
quency in relational positive and unlabeled learning by extending two common
relational classifiers to incorporate the label frequency; 2) Modifying TIcE, a
method for estimating the label frequency in PU data, to operate with rela-
tional data, and 3) Evaluating our approach experimentally.

The paper is organized as follows: Section 2 gives an overview of related work.
A general background on PU learning and how the label frequency simplifies
this problem is presented in Sect. 3. Section 4 discusses how the label frequency
can be estimated from PU data. The helpfulness of the label frequency and our
method to estimate it from the data are empirically evaluated in Sect. 5. Finally,
we conclude in Sect. 6.

2 Related Work

Positive and Unlabeled Learning has been studied mostly in propositional con-
texts. The proposed methods fall into four categories of approaches. The first
and most straightforward approach is to use standard machine learning tech-
niques and just assuming all the unlabeled examples to be negative. The second
approach is to look for examples that are very different from the labeled ones
and label these as negative. Subsequently, semi-supervised learning methods can
be applied [11–15]. The third approach is to formulate an evaluation metric that
has only positive or positive and unlabeled data as input and use this for tuning
class weights or regularization settings [16–19]. The fourth approach is the ap-
proach considered in this paper. It explicitly uses the label frequency to modify
traditional classification algorithms [20–23, 6].

In order to use the label frequency, it needs to be given as input. Note that
the label frequency can be calculated from the class prior, because the proportion
of labeled data is directly proportional to the class prior with the label frequency
as the proportionality constant. The class prior could be known from domain
knowledge or it could be estimated from a smaller fully labeled dataset. Because
this knowledge or data is often not available, several methods have been proposed
to estimate it directly from the positive and unlabeled data [6, 24, 7–10].

A few relational positive and unlabeled learning methods exist. The method
proposed by Muggleton follows the third positive and unlabeled learning ap-
proach and searches for the smallest hypothesis which covers all the positive
examples [3]. If the underlying concept is complicated, this is likely to overgen-
eralize. RelOCC is a positive and unlabeled classification method that incremen-
tally learns a tree-based distance measure which measures the distance to the
positive class [25]. The SHERLOCK system is also related because it learns rules
from positive examples by evaluating the rules on their statistical relevance and
significance, however, it does not utilize the unlabeled data [5].

Knowledge base completion is inherently a positive and unlabeled problem:
all the examples that are already in the knowledge base are positive and all



Table 1. Description of terminology used in the paper.

Term Description

y Indicator variable for an example to be positive

s Indicator variable for an example to be labeled

c Label frequency Pr(s = 1|y = 1)

ĉ Estimate of the label frequency

P (Estimated) number of positive examples

N (Estimated) number of negative examples

L Number of labeled examples

U Number of unlabeled examples

T Total number of examples

the additional facts that could be included are unlabeled [26]. However, many
methods make a closed world assumption when learning models from the original
knowledge base and assume everything that is not present to be false [27–30]. Re-
cently, a new score function for evaluating knowledge base completion rules was
proposed [1]. It approximates the true precision of a rule by assuming that the
coverage of a rule is equal for labeled and unlabeled positives and by estimating
the functionality of the relation.

3 PU Learning and the Label Frequency

This section gives some background on PU learning and how the label frequency
is used to simplify learning. The methods for using the label frequency are then
applied to popular relational classifiers. Table 1 presents the terminology used
throughout the paper.

3.1 Positive Unlabeled (PU) Learning

In traditional binary classification, learners are supplied with two types of ex-
amples: positive and negative ones. When learning from positive and unlabeled
data, commonly referred to as PU learning, there are also two types of examples:
positively labeled and unlabeled ones, where the latter can be either positive or
negative.

In PU Learning, the labeled positive examples are commonly assumed to be
‘selected completely at random’ [20, 31, 21, 22, 6]. This means that the probabil-
ity c = Pr(s = 1|y = 1) for a positive example to be labeled is constant, which is
the same for every positive example. The constant c is called the label frequency.
Implicit techniques to employ the ‘selected completely at random’ property are
to give more weight to the positive class or to model more noise in the negative
class [16–18]. It can also be used explicitly by taking the label frequency into
account when training a model [20, 31, 22, 6], which greatly simplifies learning
because traditional classifiers can be adjusted to incorporate it in a straightfor-
ward manner. This is well-established knowledge for propositional PU learning,



however, to the best of our knowledge, using the label frequency has not been
investigated yet for relational PU learning. We briefly review some of the propo-
sitional methods and discuss how they can be adjusted to the relational setting.

3.2 Using the Label Frequency to Simplify PU Learning

Elkan and Noto propose to use the label frequency directly to modify tradi-
tional classifiers for PU learning [6]. Concretely, they proposed the following two
methods:

1. Probabilistic classifier modification: This method trains a probabilistic
classifier to predict the probability for instances to be labeled. To this end,
during training, it considers unlabeled examples as negative. The label fre-
quency is then employed to modify the output probabilities. It transforms
the probability that an instance is labeled Pr(s = 1|x) into the probability
that an instance is positive: Pr(y = 1|x) = 1

c Pr(s = 1|x) [22]. This mod-
ified classifier can be used directly or to transform the PU dataset into a
probabilistically weighted PN dataset.

2. Score function modification: Learning algorithms that make decisions
based on counts of positive and negative examples data subsets i can be
modified to use counts of labeled and unlabeled examples. The positive and
negative counts Pi and Ni can be obtained with Pi = Li/c and Ni = Ti−PI .
Decision trees, for example, assign classes to leaves and score splits based on
the positive/negative counts in the potential subsets and can, therefore, be
transformed to PU learners [23].

In this paper, we demonstrate how to use these two methods in the relational
domain. The proposed solutions c-adjusted TILDE and c-adjusted Aleph are
described below.

Relational Probabilistic Classifier Modification: c-adjusted TILDE
The first method for using the label frequency requires a probabilistic classifier
which predicts the probability that an instance is labeled. The first-order logical
decision tree learner TILDE can easily be made probabilistic. Doing so simply
requires counting for each leaf i the number of labeled Li and unlabeled examples
Ui that reach i setting the leaf’s probability to Li

Ui+Li
[32]. The tree that predicts

the probability for instances to be positive has the same structure as the tree for
distinguishing between labeled and unlabeled example, but requires altering the
probability in each of its leaves. The new probability in each leaf i is 1

c
Li

Ui+Li
,

where Li and Ui are defined as above.

Relational Score Function Modification: c-adjusted Aleph
The second method for using the label frequency requires a classifier that makes
decisions based on the counts Ni and Pi in a subset of the data i. TILDE satisfies
this criterion, and so does the rule learner Aleph [33]. The default evaluation



function of Aleph is coverage, which is defined as Pi −Ni, where i is the subset
of examples that satisfy the rule. To modify Aleph to use the label frequency c,
the coverage for each rule r should be calculated as follows:

PU coverage = Pi −Ni = 2Pi − Ti = 2
Li

c
− Ti (1)

where Li is the number of labeled (i.e., positive) examples covered by the rule
and Ti is the total number of examples covered by the rule.

4 Label Frequency Estimation

To estimate the label frequency in relational PU data, we will use the insights
of a propositional label frequency estimator. We first review the original method
and then propose a relational version.

4.1 Label Frequency Estimation in Propositional PU data

The propositional estimator is TIcE [10]. It is based on two main insights: 1)
a subset of the data naturally provides a lower bound on the label frequency,
and 2) the lower bound of a large enough positive subset approximates the real
label frequency. TIcE uses decision tree induction to find likely positive subsets
and estimates the label frequency by taking the maximum of the lower bounds
implied by all the subsets in the tree.

The label frequency is the same in subsets of the data because of the ‘selected
completely at random’ assumption, therefore it can be estimated in a subset of
the data. Clearly, the true number of positive examples Pi in a subset i cannot
exceed the total number of examples in that subset Ti. This naively implies a
lower bound: c = Li/Pi ≥ Li/Ti. To take stochasticity into account, this bound
is corrected with confidence 1−δ using the one-sided Chebyshev inequality which
introduces an error term based on the subset size:

Pr

(
c ≤ Li

Ti
− 1

2

√
1− δ
δTi

)
≤ δ (2)

The higher the ratio of positive examples in the subset, the closer the bound
gets to the actual label frequency. The ratio of positive examples is unknown, but
directly proportional to the ratio of labeled examples. Therefore, TIcE aims to
find subsets of the data with a high proportion of labeled examples using decision
tree induction. To avoid overfitting, i.e. finding subsets i where Li/Pi > c, k folds
are used to induce the tree and estimate the label frequency on different datasets.

The parameter δ is set such that at least one tenth of the data or 1000
examples are needed to estimate the label frequency with an error term of 0.1:
1/2
√

(1− δ)/(δTR) = 0.1, with TR = min[T/10, 1000]. This imposed by

δ = max

[
0.025,

1

1 + 0.004T

]
(3)



Table 2. Characteristics of the Datasets

Datasets #Examples Class 1 (#) Class 2 (#) # Folds

IMDB 268 Actor (236) Director (32) 5

Mutagenesis 230 Yes (138) No (92) 5

UW-CSE 278 Student (216) Professor (62) 5

WebKB 922 Person (590) Other (332) 4

Table 3. Dataset complexities: The complexities of the models that are trained on
the complete and fully labeled datasets. For TILDE, the number of splits in the tree is
shown. For Aleph, the number of rules is reported and the average rule length is given
in parentheses.

Dataset TILDE Aleph Class1 Aleph Class2

IMDB 1 1 (1) 1 (1)

Mutagenesis 6 7 (2.29) 8 (2.25)

UW-CSE 3 5 (1) 5 (1.4)

WebKB 33 32 (3.19) 38 (2.08)

4.2 Label Frequency Estimation in Relational PU Data

We propose TIcER (Tree Induction for c Estimation in Relational data). The
main difference with TIcE is that it learns a first-order logical decision tree using
TILDE [32]. Each internal node splits on the formula which locally optimizes the
gain ratio, considering the unlabeled examples as negative. The examples that
satisfy the formula go to the left, the others to the right. Each node in the tree,
therefore, specifies a subset of the data, and each subset implies a lower bound
on the label frequency through (2). The estimate for the label frequency is the
maximal lower bound implied by the subsets:

ĉ = max
i∈subsets

[
Li

Ti
− 1

2

√
1− δ
δTi

]
(4)

To prevent overfitting, k folds are used to induce the tree and estimate the
label frequency on different datasets. With relational data, extra care should be
taken that the data in different folds are not related to each other. The final
estimate is the average of the estimates made in the different folds.

5 Experiments

Our goal is to evaluate if knowing the label frequency makes learning from
relational PU data easier and if TIcER provides a good estimate of the label
frequency. More specifically, we will answer the following questions:

Q1: Does c-adjusted TILDE, the proposed relational probabilistic classifier mod-
ification method, improve over classic TILDE when faced with PU data and
how sensitive is it to the correctness of ĉ?



Q2: Does c-adjusted Aleph, the proposed relational score function modifica-
tion method, improve over classic Aleph when faced with PU data and how
sensitive is it to the correctness of ĉ?

Q3: How well does TIcER estimate the label frequency? In which cases does it
perform better or worse?

Q4: How do label frequency adapted methods compare with Muggleton’s PosOnly
method?

5.1 Datasets

We evaluate our approach on four commonly used datasets for relational clas-
sification (Table 2). All datasets are available on Alchemy1, except for Muta-
genesis.2 The classes of WebKB are disjunctive concepts. Person contains web
pages from students, faculty and staff and Other contains web pages from de-
partments, courses, and research projects. To get an intuition of the complexity
of the concepts to be learned, Table 3 shows how big the TILDE and Aleph
models are if they are trained on the complete dataset with labels for all ex-
amples. The datasets were converted to PU datasets by selecting some of the
positive examples at random to be labeled. The labeling was done with frequen-
cies c ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Each has five different random labelings.

5.2 Methods

For our experiments we used the following PU classifiers:

– c-adjusted TILDE, as described in Sect. 3.2.
– c-adjusted Aleph, as described in Sect. 3.2.
– Aleph, taking unlabeled examples as negative (ĉ = 1)
– TILDE, taking unlabeled examples as negative (ĉ = 1)
– PosOnly: Muggleton’s approach, implemented in Aleph [3].3

All classifiers, including TILDE when used for TIcER, use standard settings,
with the exceptions of requiring PosOnly rules to cover at least two example and
allowing infinite noise and exploration in Aleph.

For the c-adjusted methods, an estimate of the label frequency c is required.
This estimate ĉ can be the correct label frequency c or the estimate obtained
by our method TIcER. For the sensitivity experiments, the ĉ is varied in c±∆
with ∆ ∈ {0, 0.05, 0.15, 0.25}. The naive baseline where unlabeled examples are
considered to be negative can be seen as a special case of the c-adjusted methods
with ĉ = 1.

k-fold cross-validation was applied for validation, i.e., k − 1 folds were used
for learning the classifier and the other fold to evaluate it. TIcER also needs

1 http://alchemy.cs.washington.edu/data/
2 http://www.cs.ox.ac.uk/activities/machlearn/mutagenesis.html
3 http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph



Fig. 1. TILDE sensitivity to c. Taking the label frequency into account clearly im-
proves the classifier. The F1 does decrease as fewer labeled examples are provided. It
is striking that underestimates and overestimates of the label frequency have very dif-
ferent effects on the performance. c-adjusted TILDE is very sensitive to overestimates,
but not to underestimates. In fact, in some cases it even benefits from underestimates!

folds for estimation, it used 1 fold for inducing a tree and the other k − 2 folds
for bounding the label frequency.

The classifiers are compared using the F1 score and the average absolute
error of the estimated cs are reported.

5.3 c-adjusted TILDE: Performance and Sensitivity to ĉ

This section aims to answer Q1: Does c-adjusted TILDE, the proposed relational
probabilistic classifier modification method, improve over classic TILDE when
faced with PU data and how sensitive is it to the correctness of ĉ? To this end,
TILDE was adjusted with different estimates for the label frequency that deviate
from the true label frequencies with fixed values ∆. The adjusted versions are
compared to the naive method which considers unlabeled examples as negative,
i.e., ĉ = 1. The results are presented in Fig. 1.

As expected, taking the label frequency into account improves the classifier.
A striking observation is that overestimates of the label frequency c can severely
degrade performance, while underestimates may even improve performance. This
is because of the modification method: only the leaf probabilities are altered.
Therefore, an underestimate makes leaves with at least one labeled example



Fig. 2. Aleph sensitivity to c. Considering the label frequency clearly substantially
improves the classifier: as the number of labeled examples decreases, the F1 score
barely drops. Aleph is not very sensitive to the label frequency c, except when there
are few positive examples to start with (IMDB-director and UW-CSE-Prof) or when
the target concept is complex (WebKB). Even in these cases, a bad estimate for the
label frequency is better than taking the unlabeled examples as negative (ĉ = 1).

more likely to classify instances as positive, while leaves without any labeled
examples will always classify instances as negative.

5.4 c-adjusted Aleph: Performance and Sensitivity to ĉ

This section aims to answer Q2: Does c-adjusted Aleph, the proposed relational
score function modification method, improve over classic Aleph when faced with
PU data and how sensitive is it to the correctness of ĉ? To this end, Aleph was
adjusted with different estimates for the label frequency that deviate from the
true label frequencies with fixed values ∆. The adjusted versions are compared
to the naive method which considers unlabeled examples as negative, i.e., ĉ = 1.
The results are presented in Fig. 2.

Taking the label frequency into account drastically improves the classifier:
the F1 score barely drops when the label frequency decreases. In most cases,
a reasonable approximation of the label frequency yields an equivalent perfor-
mance to using the true label frequency. Two exceptions are 1) when there are
few positive examples in the fully labeled dataset, and 2) when the target concept
is very complex. But even in these cases, the performance does not suffer that



Fig. 3. Label Frequency Estimates. The estimate is expected to be good if a large
enough subset with a high proportion of positives was found, this is confirmed by the
experiments. For example, the worst results, for UW-CSE (Prof), are explained by the
low positive proportions. Subset i is the subset with the maximum purity and subset
j is the largest subset that is at least 90% as pure.

much, especially when compared to simply assuming that all unlabeled examples
belong to the negative class.

5.5 TIcER Evaluation

This section aims to answer Q3: How well does TIcER estimate the label fre-
quency? In which cases does it perform better or worse? To this end, TIcER was
used to estimate the label frequency c and compared to the true label frequency
in all the training folds of all the datasets. Based on the theory, it is expected
that TIcER works well when it can find subsets in the dataset that are purely
positive and contain a sufficient number of examples. To check this, the maximal
proportion of true positives over all the used subsets was recorded for each set-
ting. We could look at the size of this purest subset to check if a large subset is
found. However, the purest subset could be very small and another subset that
is almost as pure could be very big. Therefore, we recorded the largest subset
that is at least 90% as pure as the purest subset. Figure 3 shows the averaged
absolute error |ĉ− c|, purity max(Pi/Ti) of the purest subset i and size Tj of the
largest subset j with purity close to that of the purest subset, for different label
frequencies c. Figures 4 and 5 compare the performance of TILDE and Aleph
respectively when adjusted with the TIcER estimate, the true label frequency
and without adjusting it.

TIcER gives reasonable results most of the time. The experiments confirm
our expectations: it performs worse when it fails to find subsets with a high ratio



Fig. 4. TIcER-adjusted TILDE. Adjusting TILDE with the TIcER estimate gives
very similar results to adjusting it with the true label frequency, sometimes even better.
This is explained by TIcER giving underestimates.

of positive examples or when the subsets contain few examples. Although the
estimates are not perfect, they still can improve the performance of TILDE and
Aleph. Most of the time, the performance using the estimated label frequency
is close to the performance of using the true label frequency. TILDE even gives
better results with the estimate than with the true label frequency, this is because
TIcER estimates the label frequency by looking for the maximum lower bound
and hence tends to give underestimates. Aleph performs worse for the cases where
it is sensitive to the label frequency. This is notably the case for UW-CSE.

5.6 Method Comparison

This section aims to answer Q4: How do label frequency adapted methods
compare with Muggleton’s PosOnly method? To this end, we compare TIcER-
adjusted TILDE and Aleph with PosOnly. The results are presented in Fig. 6.

The label frequency indeed makes learning from PU data easier, as it gives
similar or better results than PosOnly. It is especially interesting that for the
most complex dataset (WebKB) PosOnly is outperformed. The label frequency-
based methods are only outperformed when there are exceptionally few labeled
examples or no close-to-pure subsets in the data. Because using the label fre-
quency adjust existing methods, it can benefit from any advancements and op-
timizations made to traditional classifiers.



Fig. 5. TIcER-adjusted Aleph. Adjusting Aleph with the TIcER estimate gives for
most cases similar results to adjusting it with the true label frequency. It performs
worse for the datasets where Aleph is very sensitive to c. UW-CSE-Prof is doubly
problematic because it is both sensitive to the label frequency and the most difficult
dataset for TIcER.

6 Conclusions

For propositional PU classification tasks, it has long been known that knowing
the label frequency greatly simplifies the problem. We transferred this idea to
the relational classification tasks and make the same conclusion here. Adjusting
established classifiers such as TILDE and Aleph in very simple ways perform
equally well as Muggleton’s PosOnly method. For the most complex dataset,
PosOnly is even outperformed. Because only small adjustments in traditional
classifiers are needed, this PU classification method will improve as traditional
classifiers improve.

When the label frequency is unknown, it needs to be estimated from the
positive and unlabeled data. We propose a TIcER, a relational version of TIcE,
which employs decision trees to find pure positive subsets in the data and uses
these to estimate the label frequency. This method works well when it can find
highly positive subsets of the data that contain enough examples.
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