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Motivation and Contribution
Inference in probabilistic graphical models (PGMs) is NP-hard
⇒ No guarantees about sampled results
⇒ Learning is also hard

Tractable learning only learns model that allow e�cient inference by
using a tractable representation.

We propose the �rst tractable learning algorithm that uses PSDDs as
its representation. It learns maximally tractable models that are in-
terpretable and allow incorporation of domain knowledge/constraints.

Tractable learning
A tractable representation represents the inference calculation and
provides therefore a measure for the inference complexity (its size).

Tractable learning incrementally updates a model while keeping the
tractable representation small.

The choice of tractable representation is critical:
• SDDs most tractable: classic and complex symmetric queries.
• ACs and SPNs: less restricted and more stable learning.
• PSDDs combine all qualities.

Probabilistic Sentential Decision Diagrams (PSDDs)
PSDDs represent probability distributions

and allow linear-time inference
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1 1 0.7 · 0.4 = 0.28
1 0 0.7 · 0.6 = 0.42
0 1 0.3 · 0.4 = 0.12
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Each node N = probability distribution
f(N ): possible worlds (non-zero probability) as logical formula

prime sub

AND/product node

Pr(x|N ) = Pr(x|prime) · Pr(x|sub)

f(N ) = (x|prime) ∧ f(sub)

Prime and sub are nodes or variables

child1 childn

· · ·α1 αn

OR/sum node

Pr(x|N ) =
∑

i αi Pr(x|childi)
f(N ) =

∨
i Pr(x|childi)

Children are nodes or variables

Rules for a valid PSDD
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Every PSDD is normalized for a vtree
⇒ Decomposability:

prime and sub have
no variables in common

Determinism: f(pi)∧ f(pj) = ⊥ if i 6= j

⇒ decomposes on prime formulas f(pi)

PSDDs are . . .
4 E�cient (marginal and complex queries)
4 Interpretable
4 Able to integrate expert knowledge and domain constraints
4 Compact

PSDD Structure Learning
Greedy search algorithm:

N = initial model
while |N | <maxSize and not converged :
ops = candidateOperations(N )
op = argmaxop∈ ops score(op)
N = N .apply(op)

return N

Operations:
clone

A ¬A A ¬A

split on A

Small local operations: very stable

Optimization: nodes that will not change in
the future are cached and reused where possible

Score =
∆likelihood

∆size

Parameter learning:
Count in data

Possible initial models:
• Domain constraints
• Expert knowledge
• Independent variables
(Bayesian net without edges)

Related work
PSDDs Y. Shen, A. Choi and A. Darwiche. Tractable Operations

for Arithmetic Circuits of Probabilistic Models. NIPS16

A. Choi, G. Van den Broeck and A. Darwiche. Tractable
Learning for Structured Probability Spaces: A Case
Study in Learning Preference Distributions. IJCAI15

Other

Tractable

Learners

J. Bekker and J. Davis and A. Choi and A. Darwiche and G. Van den Broeck. Tractable
Learning for Complex Probability Queries. NIPS15

D. Lowd and A.Rooshenas. Learning Markov Networks with Arithmetic Circuits. AISTATS13

R. Gens and P. Domingos. Learning the Structure of Sum-Product Networks. ICML13

A. Dennis and V. Ventura. Greedy Structure Search for Sum-Product Networks. IJCAI15


