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Abstract

Managing patients with multimorbidity often results in polypharmacy: the pre-
scription of multiple drugs. However, the long-term effects of specific combi-
nations of drugs and diseases are typically unknown. In particular, drugs pre-
scribed for one condition may result in adverse effects for the other. To inves-
tigate which types of drugs may affect the further progression of multimorbid-
ity, we query models of diseases and prescriptions that are learned from primary
care data. State-of-the-art tractable Bayesian network representations, on which
such complex queries can be computed efficiently, are employed for these large
medical networks. Our results confirm that prescriptions may lead to unintended
negative consequences in further development of multimorbidity in cardiovascular
diseases. Moreover, a drug treatment for one disease group may affect diseases of
another group.

1 Introduction

There is currently an increased interest in multimorbidity, i.e., the co-occurrence of at least two,
but often more, chronic or acute diseases and medical conditions within a person [14]. Due to the
ageing population and other socio-economic factors, its prevalence is increasing: over two-thirds of
the elderly population in the Western world have at least three chronic conditions [1].

Clinicians who aim to manage patients with multiple diseases are confronted with different guide-
lines, each meant to manage an isolated disorder. By combining these recommendations, a patient
may receive many different drugs. Unfortunately, it is not unlikely that a drug prescribed for one
condition may result in an adverse effect for the other [3, 4]. In September 2016, the National In-
stitute for Health and Care Excellence (NICE) in the United Kingdom published the first clinical
guideline on multimorbidity which emphasized patient-centred care [7]. Given the more generalist
and multidisciplinary nature of multimorbidity, clinical validation tools were recommended.

One significant issue with multimorbidity is polypharmacy [12]. Drugs are often introduced to
prevent future morbidity and mortality, but in context of multimorbidity they may instead increase
the burden. Primary care e-health records can help identify markers of increased treatment burden,
but until now, there have been relatively few tools that indicate which drugs may be harmful to a
patient with multiple diseases.
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We employ tractable Bayesian network learning to answer the main question in this paper: what
is the effect of various treatments on the further development of multimorbidity? To that end, we
present the first method for learning Bayesian networks that can answer these complex type of
questions. Our learned network models interactions between multiple diseases and drug treatments
in the primary care. By identifying which treatment could potentially harm the patient and increase
the burden of multimorbidity even further, this work aimes to provide the first step towards better
recommendations to reduce the effects of treatment on the problem of multimorbidity.

2 Methods

In this paper, we investigate the effect of various treatments on further multimorbidity development.
More concretely, we answer the question: Which drug treatment groups increase the probability of
suffering from more diseases within a group, a group being either cardiovascular or musculo-skeletal
diseases. Furthermore, we are interested in the number of additional diseases a patient typically gets.

2.1 Data

The data used for analysis were obtained from the Netherlands institute for health services research
Primary Care Database (NPCD, formerly known as the LINH database). All Dutch inhabitants are
obligated to register with a general practice, and the NPCD registry contains information of routinely
recorded data from about all patients of approximately 90 general practices. Longitudinal data of
approximately one and a half million patient years, covering 2003-2011, were used in our analysis.
Patient data is available for the whole time frame, unless the patient moved out of the practice or the
practice itself opted out. Our analysis includes 222,506 patients, aged over 35 years. 166,881 of the
patients were randomly picked as training data, 22,250 as validation data and 33,375 as test data.

Table 1: Drug groups under consideration

Code Name Prevalence at baseline

C01 Cardiac therapy 0.072
C02 Antihypertensives 0.060
C03 Diuretics 0.006
C04 Peripheral vasodilators 0.142
C05 Vasoprotectives 0.001
C07 Beta blocking agents 0.037
C08 Calcium channel blockers 0.162
C09 Agents acting on the renin-angiotensin system 0.066
C10 Lipid modifying agents 0.145
M01 Anti-inflammatory and antirheumatic products 0.123
M02 Topical products for joint and muscular pain 0.333
M03 Muscle relaxants 0.005
M04 Antigout preparations 0.002
M05 Drugs for treatment of bone diseases 0.011
M09 Other drugs for disorders of the musculo-skeletal system 0.021
N02 Analgesics 0.008

The data was split in two time-periods: T1 = [2003− 2006] and T2 = [2007− 2011]. We used T1
as the situation at baseline, and T2 as the situation we aim to predict. We selected 16 cardiovascular
and 26 musculo-skeletal diseases (respectively group K and L of the International Classification of
Primary Care, ICPC). Two groups were used so that the effects of treatments could be measured,
both within the same group of diseases and between groups. Furthermore, we considered 16 groups
of drug treatment, listed in table 1, which are related to the two groups of diseases under considera-
tion: all ATC codes classified in the sections cardiovascular system (C) and musculo-skeletal system
(M) . Additionaly, we included analgesics (N02), because we hypothesize that this drug may be
overprescribed for various conditions.

2.2 Procedure

We model the medical domain by a Bayesian network which we subsequently use for answering our
research questions. Bayesian networks have been used before to investigate multimorbidity [9, 10].
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They are popular because of their compact and intuitive nature. However, using them for answering
queries about the domain does not scale well, as this problem is in general NP-hard, even for simple
marginal queries. Tractable learning is a new promising field that focuses on learning Bayesian
networks and other types of probabilistic graphical models that guarantee to answer certain classes
of queries within limited time. Which classes of queries can be answered efficiently depends on
the tractable representation. The most general representation that is being used today are Sentential
Decision Diagrams (SDDs) [6, 2]. Its query space includes symmetric queries which aggregate over
a subset of the variables. This allows us to reason on a higher level, for example, by asking queries
about the class of cardiovascular diseases instead of a specific type of heart attack.

This paper presents the first method for learning Bayesian networks that efficiently answer sym-
metric queries efficiently, by using SDDs as their tractable representation. SDDs are highly flexible
representations which facilitate adaptation of established non-tractable learners to tractable SDD
learners. The Bayesian network is encoded as an SDD using ENC2 of Chavira and Darwiche (2008)
[5]. Ordering-based search, rather than structure search, was used, as it performs equally well and
usually faster [13]. Essentially, a fixed variable ordering facilitates learning the optimal network
structure efficiently. Hence, searching for the best structure can be reduced to searching for the best
ordering. The ordering, which is initially random, gets improved by greedily swapping variables that
result in the best score. Local optima are avoided using restarts and Tabu lists. Tractable ordering-
based search guarantees tractability by using a score that favors tractable models. Unfortunately, this
extra score criterion makes it hard to learn the optimal network structure, even when the ordering is
known. Nevertheless, searching over the order is advantageous because of its speed.

We adapted the algorithm to use decision trees for the conditional probability distributions (CPT-
trees) instead of tables as they are shown to be able to capture complex domains with less variables
and are therefore more tractable [8]. To find a good structure for an ordering, the CPT-trees are
greedily grown, optimizing the improvement in likelihood penalized with the decrease in tractabil-
ity [11]. This continues until the likelihood converges or as long as learning time and tractability
constraints allow it. Next, two variables are swapped in the ordering. The swap that provides the
highest upperbound on likelihood increase, is selected. It is executed by removing all the edges to
the swapped variables in the Bayesian network. This process of growing CPT-trees and swapping
variables is repeated as long as time allows. Note that the last model is not necessarily the best
one found by the process. A model is picked from all the seen models based on its validation set
likelihood

We learned Bayesian networks for three days with 60 restarts. The parameters have a symmetric
Dirichlet distribution with parameter α ∈ {1.0, 0.1, 0.001, 0.00001} as a prior. The minimum con-
tribution in log likelihood of a split needs to be 0.0001. The maximum SDD size is 2,000,000. The
maximum time for adding splits is 900s. The tabu list size is 10.

The selected model is used to calculate the probability of suffering from additional diseases within a
group, both in general and after receiving a specific drug treatment. These probabilities are compared
to see which drug treatments increase the probability. To investigate the size of the increment, we
calculate the probability of an increment of size k ∈ {1, 2, 3, 4}. To calculate the probabilities, the
SDD of the chosen model is queried, using the publically available software.1

2.3 Analysis

Table 2 gives the odds of suffering from additional diseases within a group, after receiving a certain
drug treatment. It is calculated as follows:

Pr(#diseases in group in T2 > #diseases in group in T1 | drug treatment in T1)
Pr(#diseases in group in T2 > #diseases in group in T1)

This number is 1 if the drug has no influence on the number of diseases and is greater or smaller
than 1 when it respectively increases or decreases the number of diseases. The denominator of the
fraction is 0.35 for cardiovascular and 0.44 for musculo-skeletal diseases. Big increases are marked
in bold. Table 3 lists the probabilities of getting exactly k more diseases when there is an increase.

1https://dtai.cs.kuleuven.be/software/learnsdd/
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Table 2: The odds of suffering from additional diseases within a group, after receiving a certain drug
treatment.

Drug group Disease group Drug group Disease group
Cardiovascular Musculo-skeletal Cardiovascular Musculo-skeletal

C01 1.17 0.89 M01 1.02 0.92
C02 0.98 0.95 M02 1.20 0.76
C03 1.18 1.01 M03 1.00 1.00
C04 0.89 0.88 M04 1.00 1.00
C05 1.00 1.00 M05 0.95 0.95
C07 1.00 0.93 M09 1.30 0.85
C08 0.98 0.94
C09 0.89 0.91 N02 1.46 0.88
C10 0.89 0.90

Table 3: The probabilities of getting exactly k more diseases when there is an increase.

k 1 2 3 4
Pr(k more cardiovascular diseases) 0.68 0.23 0.07 0.02
Pr(k more musculo-skeletal diseases) 0.47 0.28 0.14 0.07

3 Results

Prescriptions may lead to unintended negative consequences in further development of multimor-
bidity. Our results indeed show that there is a relationship between drugs and increase of cardio-
vascular diseases, but not of musculo-skeletal diseases. Notably, prescriptions may affect diseases
in different subgroup from the disease that is being treated. For example, drugs for disorders of the
musculo-skeletal system (M02 and M09) and analgesics (N02) seem to have a negative effect on
cardiovascular health. These results are not sufficient to conclude causal relationships but they do
emphasize the importance of a multidisciplinary approach in the context of multimorbidity. Note
that these negative effects may be different between subgroups of diseases. Our results in table 3
suggest that if cardiovascular health decreases, the number of additional diagnoses is limited com-
pared to the musculo-skeletal subgroup.

4 Conclusion

In this paper we investigated the effect of various treatments on further multimorbidity development,
employing Bayesian network learning to model the domain. Although Bayesian networks have been
used before to investigate multimorbidity, scaling such an analysis to larger networks which include
prescriptions, requires tractable representations [9, 10]. In this work we examined two groups of dis-
eases and discovered that prescription for one group can negatively effect the multimorbidity of the
other group. Furthermore, these effects may differ between groups. This underlines the importance
of a multidisciplinary approach in the context of multimorbidity. Future work will include analysis
of more types of diseases and drug treatments.
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