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|GOAL AND MOTIVATION ] |ORDERING—BASED SEARCH ]

Upgrading ordering-based search |1| for learning tractable Bayesian e Ordering over variables in network

networks. E.g: @"@"@

e FFor Bayesian networks, this works better than structure-search possible parents of C: {A, B}

e Flexible tractable representation (SDD |[2|) makes this possible

e Given ordering = finding the best network is easy

TRACTABLE LEARNING e Search over orderings by swapping neighbors in ordering

Structure Learning of Bayesian networks that: e Optimizations:

— Caching
e Guarantee efficient inference for certain queries _ Random restarts
e (Guarantee exact reasoning — Sparse candidates
Simultaneously learn 1) a Bayesian network |CHALLENGES IN TRACTABLE CONTEXT ]
and 2) a tractable representation for it. 1 Full CPTs are not tractable
Incrementally change the network so that: = Use decision tree CPDs

e The accuracy improves :
¥ HHEP 2. dcore 1s not decomposable

* Querying remains efficient Score function has two parts:
(= keep tractable representation small)
e [ikelihood

Possible tractable representations: o Efficiency = 77 edges in SDD

Arithmetic Circuit (AC): Not flexible: cannot execute swap. Efficiency is not decomposable!

ACBN BN .
Used by ACBN [3], only other tractable learner — Fix efficiency when swapping

Sentential Decision Diagram (SDD): Flexible! We use this. = Add split operator that adds a split to tree CPD

SEARCH OPERATORS
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|PREL11\/IINARY RESULTS ] |ONGOING WORK ]

Tested with conditional probability queries Pr(X|Y) e Datasets with more variables
X: Query variables
Y: Evidence variables

e Reduce local minima

— Good splits below a bad split are never reached

The queries are generated from test data — @®©@® . B and C not in ech other’s sparse candidate
set = Cannot reach better ordering ©>@>-@>®
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SDDBN and ACBN yield similar results.




